Skip to main content

Osteoarthritis Detection and Classification in Knee X-Ray Images Using Particle Swarm Optimization with Deep Neural Network

  • Chapter
  • First Online:
Interpretable Cognitive Internet of Things for Healthcare

Part of the book series: Internet of Things ((ITTCC))

Abstract

Explainable artificial intelligence (XAI) involves a collection of processes and approaches which enables human users to comprehend and trust the results and output produced by machine learning (ML) approaches. XAI is employed for describing the AI model, its expected impact, and potential biases. At the same time, Internet of Healthcare Things (IoHT) has become a hot research topic in the healthcare sector which assist in the disease diagnostic process. Presently, an efficient computer-aided diagnosis (CAD) model is needed for diagnosing osteoarthritis (OA). This study designs a new particle swarm optimization (PSO) model with deep neural network (DNN), named PSO-DNN technique, for the identification and categorization of osteoarthritis from the knee X-ray images in an IoHT environment. The presented method helps to distinguish between well and diseased knee X-ray images. Here, a guided filter (GF) and adaptive histogram equalization models are correspondingly employed to remove noises and enhance the images. Global thresholding-based segmentation model is employed for extracting the synovial cavity regions from the image, and curvature values are determined. For drawing a good validation, the experimentation takes place on the real-time patient-oriented images gathered from the medical organizations. From the simulation outcome, the presented PSO-DNN model confirmed the superior performance of the applied images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, X., Liang, W., Kevin, I., Wang, K., Wang, H., Yang, L. T., & Jin, Q. (2020). Deep-learning-enhanced human activity recognition for internet of healthcare things. IEEE Internet of Things Journal, 7(7), 6429–6438.

    Article  Google Scholar 

  2. Jesmin, S., Kaiser, M. S., & Mahmud, M. (2020). Artificial and internet of healthcare things based Alzheimer care during COVID 19. In International conference on brain informatics (pp. 263–274). Springer.

    Google Scholar 

  3. Kaur, H., Atif, M., & Chauhan, R. (2020). An internet of healthcare things (IoHT)-based healthcare monitoring system. In Advances in intelligent computing and communication (pp. 475–482). Springer.

    Google Scholar 

  4. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., & Chatila, R. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.

    Article  Google Scholar 

  5. Anifah, L., Purnomo, M., Mengko, T., & Purnama, I. (2018). Osteoarthritis severity determination using self organizingmap based Gabor kernel. IOP Conference Series: Materials Science and Engineering, 306, 12071.

    Article  Google Scholar 

  6. Navale, D. I., Hegadi, R. S., & Mendgudli, N. (2015). Block based texture analysis approach for knee osteoarthritis identification using SVM. In IEEE international WIE conference on electrical and computer engineering (pp. 338–341). IEEE.

    Google Scholar 

  7. Antony, J., McGuinness, K., O’Connor, N. E., & Moran, K. (2016). Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In 23rd international conference on pattern recognition (pp. 1195–1200). IEEE.

    Google Scholar 

  8. Anifah, L., Purnama, I. K. E., Hariadi, M., & Purnomo, M. H. (2013). Osteoarthritis classification using self organizing map based on Gabor kernel and contrast-limited adaptive histogram equalization. Open Biomedical Engineering Journal, 7, 18–28.

    Article  Google Scholar 

  9. Suresha, S., Kidzi’nski, L., Halilaj, E., Gold, G., & Delp, S. (2018). Automated staging of knee osteoarthritis severity using deep neural networks. Osteoarthritis and Cartilage, 26(1), S440–S441.

    Google Scholar 

  10. Raj, A., Vishwanathan, S., Ajani, B., Krishnan, K., & Agarwal, H. (2018). Automatic knee cartilage segmentation using fully volumetric convolutional neural networks for evaluation of osteoarthritis. In IEEE 15th international symposium on biomedical imaging (pp. 851–854). IEEE.

    Google Scholar 

  11. Ruikar, D. D., Santosh, K. C., & Hegadi, R. S. (2019). Automated fractured bone segmentation and labeling from CT images. Journal of Medical Systems, 43(3), 60.

    Article  Google Scholar 

  12. Ruikar, D. D., Santosh, K. C., & Hegadi, R. S. (2019). Chapter 7: Segmentation and analysis of CT images for bone fracture detection and labeling. In Medical imaging: Artificial intelligence, image recognition, and machine learning techniques. CRC Press.

    Google Scholar 

  13. Ningsih, D. R. (2020). Improving retinal image quality using the contrast stretching, histogram equalization, and CLAHE methods with median filters. International Journal of Image, Graphics and Signal Processing, 12(2), 30.

    Article  Google Scholar 

  14. Zhang, X., Liu, H., & Tu, L. (2020). A modified particle swarm optimization for multimodal multi-objective optimization. Engineering Applications of Artificial Intelligence, 95, 103905.

    Article  Google Scholar 

  15. Gadekallu, T. R., Khare, N., Bhattacharya, S., Singh, S., Maddikunta, P. K. R., & Srivastava, G. (2020). Deep neural networks to predict diabetic retinopathy. Journal of Ambient Intelligence and Humanized Computing, 1–14. https://doi.org/10.1007/s12652-020-01963-7

  16. Fernandes, F. E., Jr., & Yen, G. G. (2019). Particle swarm optimization of deep neural networks architectures for image classification. Swarm and Evolutionary Computation, 49, 62–74.

    Article  Google Scholar 

  17. Hegadi, R. S., Navale, D. I., Pawar, T. D., & Ruikar, D. D. (2019). Osteoarthritis detection and classification from knee X-ray images based on artificial neural network. In Recent Trends in image processing and pattern recognition: Second international conference, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised Selected Papers, Part II 2 (pp. 97–105). Springer.

    Google Scholar 

  18. Saad, G., Khadour, A., & Kanafani, Q. (2016). ANN and Adaboost application for automatic detection of microcalcifications in breast cancer. The Egyptian Journal of Radiology and Nuclear Medicine, 47(4), 1803–1814.

    Google Scholar 

  19. Qing-Yun, S., & Fu, K. S. (1983). A method for the design of binary tree classifiers. Pattern Recognition, 16(6), 593–603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hema Rajini, N., Anton Smith, A. (2023). Osteoarthritis Detection and Classification in Knee X-Ray Images Using Particle Swarm Optimization with Deep Neural Network. In: Kose, U., Gupta, D., Khanna, A., Rodrigues, J.J.P.C. (eds) Interpretable Cognitive Internet of Things for Healthcare. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-031-08637-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08637-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08636-6

  • Online ISBN: 978-3-031-08637-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics