Skip to main content

Image-Guided Adaptive Brachytherapy

  • Chapter
  • First Online:
Image-Guided High-Precision Radiotherapy

Abstract

The use of imaging has an enormous impact on the workflow and use of brachytherapy. Imaging is used in the whole process from preparation for application to quality assurance during dose delivery.

In cervix brachytherapy (BT), ultrasound (US) is commonly used for guidance during the application. For treatment planning, magnetic resonance imaging (MRI) is the modality of choice, because it incorporates all volumes of interest within one data set and gives the best information about the local and regional tumor extension. If MRI is not or less available, methods with use of computed tomography (CT)-scan or US are possible.

In prostate BT, US is typically used for implantation. For treatment planning, other modalities, such as CT and MRI are also used. Particularly the use of MRI makes it possible to target the dose to visible intraprostatic lesions. This is done either as a BT boost dose or as a limited treated volume in the context of partial prostate BT.

Besides imaging as a tool for assessment of tumor and organs, imaging is also needed to reconstruct the applicators inserted for BT. The accuracy of this reconstruction has an impact on the accuracy of the dosimetry. In certain cases, it is necessary to register different imaging modalities to each other in order to take advantages of differences in applicator and anatomical assessments.

In modern BT, treatment planning is done on volumes and no longer on dose points. With this development, much better prediction of tumor control and toxicity is acquainted when considering dose-volume parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egan R, Johnson GC. Multisection transverse tomography in radium implant calculations. Radiology. 1960;74:407–13.

    CAS  PubMed  Google Scholar 

  2. Munzenrider JE, Pilepich M, Rene-Ferrero JB, Tchakarova I, Carter BL. Use of body scanner in radiotherapy treatment planning. Cancer. 1977;40:170–9.

    CAS  PubMed  Google Scholar 

  3. Lee KR, Mansfield CM, Dwyer SJ III, Cox HL, Levine E, Templeton AW. CT for intracavitary radiotherapy planning. Am J Radiol. 1980;135:809–13.

    CAS  Google Scholar 

  4. Pötter R. Modern imaging in brachytherapy. In: The GEC-ESTRO handbook of brachytherapy. Leuven: ESTRO; 2002.

    Google Scholar 

  5. Tod M, Meredith WJ. Treatment of cancer of the cervix uteri, a revised Manchester method. Br J Radiol. 1953;26:252–7.

    CAS  PubMed  Google Scholar 

  6. ICRU. International Commission on Radiation Units and Measurements. Dose and volume specification for reporting intracavitary therapy in gynaecology, ICRU report 38, Oxford University Press, Oxford, United Kingdom. 1985.

    Google Scholar 

  7. Jamema SV, Saju S, Mahantshetty U, Palad S, Deshpande DD, Shrivastava SK, et al. Dosimetric evaluation of rectum and bladder using image-based CT planning and orthogonal radiographs with ICRU 38 recommendations in intracavitary brachytherapy. J Med Phys. 2008;33:3–8.

    PubMed  PubMed Central  Google Scholar 

  8. Tanderup K, Nielsen SK, Nyvang G-B, Pedersen EM, Røhl L, Aagaard T, et al. From point a to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol. 2010;94(2):173–80.

    PubMed  Google Scholar 

  9. Haie-Meder C, Pötter R, van Limbergen E, Briot E, De Brabandere M, Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group I: concepts and terms in 3D image-based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.

    PubMed  Google Scholar 

  10. Pötter R, Kirisits C, Erickson B, Haie-Meder C, Van Limbergen E, Lindegaard JC, et al. Prescribing, recording, and reporting brachytherapy for cancer of the cervix, ICRU report 89. Oxford: Oxford University Press; 2016.

    Google Scholar 

  11. Mazeron R, Castelnau-Marchand P, Dumas I, del Campo ER, Kom LK, Martinetti F, et al. Impact of treatment time and dose escalation on local control in locally advanced cervical cancer treated by chemoradiation and image-guided pulsed-dose rate adaptive brachytherapy. Radiother Oncol. 2015;114(2):257–63.

    PubMed  Google Scholar 

  12. Fokdal L, Sturdza A, Mazeron R, Haie-Meder C, Tan LT, Gillham C, et al. Image-guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study. Radiother Oncol. 2016;120(3):434–40.

    PubMed  Google Scholar 

  13. Pötter R, Georg P, Dimopoulos J, Grimm M, Berger D, Nesvacil N, et al. Clinical outcome of protocol-based image (MRI)-guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100(1):116–23.

    PubMed  PubMed Central  Google Scholar 

  14. Sturdza A, Potter R, Fokdal LU, Haie-Meder C, Tan LT, Mazeron R, et al. Image-guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol. 2016;120(3):428–33.

    PubMed  Google Scholar 

  15. Barnes EA, Thomas G, Ackerman I, Barbera L, Letourneau D, Lam KL, et al. Prospective comparison of clinical and computed tomography assessment in detecting uterine perforation with intracavitary brachytherapy for carcinoma of the cervix. Int J Gynecol Cancer. 2007;17:821–6.

    CAS  PubMed  Google Scholar 

  16. Mayr NA, Montebello JF, Sorosky JI, Daugherty JS, Nguyen DL, Mardirossian G, et al. Brachytherapy management of the retroverted uterus using ultrasound-guided implant applicator placement. Brachytherapy. 2005;4(1):24–9.

    PubMed  Google Scholar 

  17. Davidson MT, Yuen J, D'Souza DP, Radwan JS, Hammond JA, Batchelar DL. Optimization of high-dose-rate cervix brachytherapy applicator placement: the benefits of intraoperative ultrasound guidance. Brachytherapy. 2008;7(3):248–53.

    PubMed  Google Scholar 

  18. Schmid MP, Nesvacil N, Potter R, Kronreif G, Kirisits C. Transrectal ultrasound for image-guided adaptive brachytherapy in cervix cancer - an alternative to MRI for target definition? Radiother Oncol. 2016;120(3):467–72.

    PubMed  Google Scholar 

  19. Nesvacil N, Schmid MP, Potter R, Kronreif G, Kirisits C. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: proof of concept. Brachytherapy. 2016;15(6):839–44.

    PubMed  Google Scholar 

  20. Mahantshetty U, Naga CP, Khadanga CR, Gudi S, Chopra S, Gurram L, et al. A prospective comparison of computed tomography with transrectal ultrasonography assistance and magnetic resonance imaging-based target-volume definition during image- guided adaptive brachytherapy for cervical cancers. Int J Radiat Oncol Biol Phys. 2018;102(5):1448–56.

    PubMed  Google Scholar 

  21. Pötter R, Haie-Meder C, van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, et al. Recomendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy - 3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.

    Google Scholar 

  22. Mazeron R, Fokdal LU, Kirchheiner K, Georg P, Jastaniyah N, Segedin B, et al. Dose-volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: results from the prospective multicenter EMBRACE study. Radiother Oncol. 2016;120(3):412–9.

    PubMed  Google Scholar 

  23. Schmid MP, Fidarova E, Pötter R, Petric P, Bauer V, Woehs V, et al. Magnetic resonance imaging for assessment of parametrial tumour spread and regression patterns in adaptive cervix cancer radiotherapy. Acta Oncol. 2013;52:1384–90.

    PubMed  Google Scholar 

  24. Nomden CN, de Leeuw AA, Moerland MA, Roesink JM, Tersteeg RJ, Jurgenliemk-Schulz IM. Clinical use of the Utrecht applicator for combined intracavitary/interstitial brachytherapy treatment in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2012;82(4):1424–30.

    PubMed  Google Scholar 

  25. Dimopoulos JCA, Kirisits C, Petric P, Georg P, Lang S, Berger D, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: clinical feasibility and preliminary results. Int J Radiat Oncol Biol Phys. 2006;66(1):83–90.

    PubMed  Google Scholar 

  26. Yoshida K, Jastaniyah N, Sturdza A, Lindegaard J, Segedin B, Mahantshetty U, et al. Assessment of parametrial response by growth pattern in patients with International Federation of Gynecology and Obstetrics Stage IIB and IIIB cervical cancer: analysis of patients from a prospective, multicenter trial (EMBRACE). Int J Radiat Oncol Biol Phys. 2015;93(4):788–96.

    PubMed  Google Scholar 

  27. Nesvacil N, Tanderup K, Hellebust TP, De Leeuw A, Lang S, Mohamed S, et al. A multicentre comparison of the dosimetric impact of inter- and intra-fractional anatomical variations in fractionated cervix cancer brachytherapy. Radiother Oncol. 2013;107(1):20–5.

    PubMed  PubMed Central  Google Scholar 

  28. Kirisits C, Rivard MJ, Baltas D, Ballester F, De Brabandere M, van der Laarse R, et al. Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-ESTRO and the AAPM. Radiother Oncol. 2014;110(1):199–212.

    PubMed  PubMed Central  Google Scholar 

  29. van Heerden LE, Houweling AC, Koedooder K, van Kesteren Z, van Wieringen N, Rasch CRN, et al. Structure-based deformable image registration: added value for dose accumulation of external beam radiotherapy and brachytherapy in cervical cancer. Radiother Oncol. 2017;123(2):319–24.

    PubMed  Google Scholar 

  30. Swamidas J, Kirisits C, De Brabandere M, Hellebust TP, Siebert FA, Tanderup K. Image registration, contour propagation and dose accumulation of external beam and brachytherapy in gynecological radiotherapy. Radiother Oncol. 2020;143:1–11.

    CAS  PubMed  Google Scholar 

  31. van Heerden LE, van Wieringen N, Koedooder K, Rasch CRN, Pieters BR, Bel A. Dose warping uncertainties for the accumulated rectal wall dose in cervical cancer brachytherapy. Brachytherapy. 2018;17(2):449–55.

    PubMed  Google Scholar 

  32. Holm HH, Juul N, Pedersen JF, Hansen H, Strøyer I. Transperineal 125iodine seed implantation in prostatic cancer guided by transrectal ultrasonography. J Urol. 1983;130(2):283–6.

    CAS  PubMed  Google Scholar 

  33. Siebert FA, Kirisits C, Hellebust TP, Baltas D, Verhaegen F, Camps S, et al. GEC-ESTRO/ACROP recommendations for quality assurance of ultrasound imaging in brachytherapy. Radiother Oncol. 2020;148:51–6.

    PubMed  Google Scholar 

  34. Orio PF 3rd, Tutar IB, Narayanan S, Arthurs S, Cho PS, Kim Y, et al. Intraoperative ultrasound-fluoroscopy fusion can enhance prostate brachytherapy quality. Int J Radiat Oncol Biol Phys. 2007;69(1):302–7.

    PubMed  Google Scholar 

  35. Lee J, Mian OY, Le Y, Bae HJ, Burdette EC, DeWeese TL, et al. Intraoperative registered ultrasound and fluoroscopy (iRUF) for dose calculation during prostate brachytherapy: improved accuracy compared to standard ultrasound-based dosimetry. Radiother Oncol. 2017;124(1):61–7.

    PubMed  PubMed Central  Google Scholar 

  36. Kovács G, Pötter R, Loch T, Hammer J, Kolkman-Deurloo I, de la Rosette JJMCH, et al. GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer. Radiother Oncol. 2005;74:137–48.

    PubMed  Google Scholar 

  37. Hoskin PJ, Colombo A, Henry A, Niehoff P, Paulsen Hellebust T, Siebert F, et al. GEC/ESTRO recommendations on high-dose-rate afterloading brachytherapy for localised prostate cancer: an update. Radiother Oncol. 2013;107(3):325–32.

    PubMed  Google Scholar 

  38. Dinkla AM, van der Laarse R, Kaljouw E, Pieters BR, Koedooder K, van Wieringen N, et al. A comparison of inverse optimization algorithms for HDR/PDR prostate brachytherapy treatment planning. Brachytherapy. 2015;14(2):279–88.

    PubMed  Google Scholar 

  39. Westendorp H, Nuver TT, Moerland MA, Minken AW. An automated, fast and accurate registration method to link stranded seeds in permanent prostate implants. Phys Med Biol. 2015;60(20):N391–403.

    CAS  PubMed  Google Scholar 

  40. Peters M, Smit Duijzentkunst DA, Westendorp H, van de Pol SMG, Kattevilder R, Schellekens A, et al. Adaptive cone-beam CT planning improves long-term biochemical disease-free survival for 125 I prostate brachytherapy. Brachytherapy. 2017;16(2):282–90.

    CAS  PubMed  Google Scholar 

  41. Tanaka O, Hayashi S, Matsuo M, Nakano M, Uno H, Ohtakara K, et al. Effect of edema on postimplant dosimetry in prostate brachytherapy using CT/MRI fusion. Int J Radiat Oncol Biol Phys. 2007;69(2):614–8.

    PubMed  Google Scholar 

  42. Ash D, Flynn A, Battermann J, de Reijke T, Lavagnini P, Blank L. ESTRO/EAU/EORTC recommendations on permanent seed implantation for localized prostate cancer. Radiother Oncol. 2000;57:315–21.

    CAS  PubMed  Google Scholar 

  43. Bittner NHJ, Orio PF, Merrick GS, Prestidge BR, Hartford AC, Rosenthal SA. The American College of Radiology and the American brachytherapy society practice parameter for transperineal permanent brachytherapy of prostate cancer. Brachytherapy. 2017;16(1):59–67.

    PubMed  Google Scholar 

  44. Fuller DB, Koziol JA, Feng AC. Prostate brachytherapy seed migration and dosimetry: analysis of stranded sources and other potential predictive factors. Brachytherapy. 2004;3(1):10–9.

    PubMed  Google Scholar 

  45. Westendorp H, Nuver TT, Hoekstra CJ, Moerland MA, Minken AW. Edema and seed displacements affect intraoperative permanent prostate brachytherapy dosimetry. Int J Radiat Oncol Biol Phys. 2016;96(1):197–205.

    PubMed  Google Scholar 

  46. Ohashi T, Yorozu A, Toya K, Saito S, Momma T, Nagata H, et al. Comparison of intraoperative ultrasound with postimplant computed tomography--dosimetric values at Day 1 and Day 30 after prostate brachytherapy. Brachytherapy. 2007;6(4):246–53.

    PubMed  Google Scholar 

  47. Stone NN, Hong S, Lo Y-C, Howard V, Stock RG. Comparison of intraoperative dosimetric implant representation with postimplant dosimetry in patients receiving prostate brachytherapy. Brachytherapy. 2003;2(1):17–25.

    PubMed  Google Scholar 

  48. Chauveinc L, Flam T, Solignac S, Thiounn N, Firmin F, Debre B, et al. Prostate cancer brachytherapy: is real-time ultrasound-based dosimetry predictive of subsequent CT-based dose distribution calculation? A study of 450 patients by the Institut curie/hospital Cochin (Paris) group. Int J Radiat Oncol Biol Phys. 2004;59(3):691–5.

    PubMed  Google Scholar 

  49. Petrik D, Araujo C, Kim D, Halperin R, Crook JM. Implications of CT imaging for postplan quality assessment in prostate brachytherapy. Brachytherapy. 2012;11(6):435–40.

    PubMed  Google Scholar 

  50. Bowes D, Crook JM, Araujo C, Batchelar D. Ultrasound–CT fusion compared with MR–CT fusion for postimplant dosimetry in permanent prostate brachytherapy. Brachytherapy. 2013;12(1):38–43.

    PubMed  Google Scholar 

  51. Dinkla A, Pieters BR, Koedooder K, van Wieringen N, van der Laarse R, van der Grient JN, et al. Improved tumor control probability with MRI-based prostate brachytherapy treatment planning. Ann Oncol. 2013;52(3):658–65.

    Google Scholar 

  52. Brown AP, Pugh TJ, Swanson DA, Kudchadker RJ, Bruno TL, Christensen EN, et al. Improving prostate brachytherapy quality assurance with MRI-CT fusion-based sector analysis in a phase II prospective trial of men with intermediate-risk prostate cancer. Brachytherapy. 2013;12(5):401–7.

    PubMed  Google Scholar 

  53. Anderson ES, Margolis DJ, Mesko S, Banerjee R, Wang PC, Demanes DJ, et al. Multiparametric MRI identifies and stratifies prostate cancer lesions: implications for targeting intraprostatic targets. Brachytherapy. 2014;13(3):292–8.

    PubMed  Google Scholar 

  54. Pieters BR, Wijkstra H, van Herk M, Kuipers R, Kaljouw E, de la Rosette J, et al. Contrast-enhanced ultrasound as support for prostate brachytherapy treatment planning. J Contemp Brachyther. 2012;4(2):67–74.

    Google Scholar 

  55. Futterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A, et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol. 2015;68(6):1045–53.

    PubMed  Google Scholar 

  56. Crook J, Ots A, Gaztanaga M, Schmid M, Araujo C, Hilts M, et al. Ultrasound-planned high-dose-rate prostate brachytherapy: dose painting to the dominant intraprostatic lesion. Brachytherapy. 2014;13(5):433–41.

    PubMed  Google Scholar 

  57. von Eyben FE, Kiljunen T, Kangasmaki A, Kairemo K, von Eyben R, Joensuu T. Radiotherapy boost for the dominant intraprostatic cancer lesion-a systematic review and meta-analysis. Clin Genitourin Cancer. 2016;14(3):189–97.

    Google Scholar 

  58. Rylander S, Polders D, Steggerda MJ, Moonen LM, Tanderup K, Van der Heide UA. Re-distribution of brachytherapy dose using a differential dose prescription adapted to risk of local failure in low-risk prostate cancer patients. Radiother Oncol. 2015;115(3):308–13.

    PubMed  Google Scholar 

  59. Li A, Andersen E, Lervåg C, Julin CH, Lyng H, Hellebust TP, et al. Dynamic contrast- enhanced magnetic resonance imaging for hypoxia mapping and potential for brachytherapy targeting. Phys Imaging Radiat Oncol. 2017;2:1–6.

    Google Scholar 

  60. Mason J, Al-Qaisieh B, Bownes P, Wilson D, Buckley DL, Thwaites D, et al. Multi-parametric MRI-guided focal tumor boost using HDR prostate brachytherapy: a feasibility study. Brachytherapy. 2014;13(2):137–45.

    PubMed  Google Scholar 

  61. Ennis RD, Quinn SA, Trichter F, Ryemon S, Jain A, Saigal K, et al. Phase I/II prospective trial of cancer-specific imaging using ultrasound spectrum analysis tissue-type imaging to guide dose-painting prostate brachytherapy. Brachytherapy. 2015;14(6):801–8.

    PubMed  Google Scholar 

  62. Kovacs G, Cosset JM, Carey B. Focal radiotherapy as focal therapy of prostate cancer. Curr Opin Urol. 2014;24(3):231–5.

    PubMed  Google Scholar 

  63. Duijzentkunst DA, Peters M, van der Voort van Zyp JR, Moerland MA, van Vulpen M. Focal salvage therapy for local prostate cancer recurrences after primary radiotherapy: a comprehensive review. World J Urol. 2016;34(11):1521–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cosset JM, Cathelineau X, Wakil G, Pierrat N, Quenzer O, Prapotnich D, et al. Focal brachytherapy for selected low-risk prostate cancers: a pilot study. Brachytherapy. 2013;12(4):331–7.

    PubMed  Google Scholar 

  65. Nguyen PL, Chen MH, Zhang Y, Tempany CM, Cormack RA, Beard CJ, et al. Updated results of magnetic resonance imaging-guided partial prostate brachytherapy for favorable risk prostate cancer: implications for focal therapy. J Urol. 2012;188(4):1151–6.

    PubMed  PubMed Central  Google Scholar 

  66. Maenhout M, Peters M, van Vulpen M, Moerland MA, Meijer RP, van den Bosch M, et al. Focal MRI-guided salvage high-dose-rate brachytherapy in patients with Radiorecurrent prostate cancer. Technol Cancer Res Treat. 2017;16(6):1194–201.

    PubMed  PubMed Central  Google Scholar 

  67. Maenhout M, Peters M, Moerland MA, Meijer RP, van den Bosch M, Frank SJ, et al. MRI-guided focal HDR brachytherapy for localized prostate cancer: toxicity, biochemical outcome and quality of life. Radiother Oncol. 2018;129(3):554–60.

    PubMed  Google Scholar 

  68. Murgic J, Morton G, Loblaw A, D'Alimonte L, Ravi A, Wronski M, et al. Focal salvage high-dose-rate brachytherapy for locally recurrent prostate cancer after primary radiation therapy failure: results from a prospective clinical trial. Int J Radiat Oncol Biol Phys. 2018;102(3):561–7.

    PubMed  Google Scholar 

  69. Brun T, Bachaud JM, Graff-Cailleaud P, Malavaud B, Portalez D, Popotte C, et al. New approach of ultra-focal brachytherapy for low- and intermediate-risk prostate cancer with custom-linked I-125 seeds: a feasibility study of optimal dose coverage. Brachytherapy. 2018;17(3):544–55.

    PubMed  Google Scholar 

  70. Turkbey B, Mani H, Shah V, Rastinehad AR, Bernardo M, Pohida T, et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging-based molds. J Urol. 2011;186(5):1818–24.

    PubMed  PubMed Central  Google Scholar 

  71. Ahmed HU, Hu Y, Carter T, Arumainayagam N, Lecornet E, Freeman A, et al. Characterizing clinically significant prostate cancer using template prostate mapping biopsy. J Urol. 2011;186(2):458–64.

    PubMed  Google Scholar 

  72. Langley S, Ahmed HU, Al-Qaisieh B, Bostwick D, Dickinson L, Gomez Veiga F, et al. Report of a consensus meeting on focal low-dose rate brachytherapy for prostate cancer. BJU Int. 2012;109(Supl 1):7–16.

    PubMed  Google Scholar 

  73. Polders DL, Steggerda M, van Herk M, Nichol K, Witteveen T, Moonen L, et al. Establishing implantation uncertainties for focal brachytherapy with I-125 seeds for the treatment of localized prostate cancer. Acta Oncol. 2015;54(6):839–46.

    PubMed  Google Scholar 

  74. Mayer A, Zholkover A, Portnoy O, Raviv G, Konen E, Symon Z. Deformable registration of trans-rectal ultrasound (TRUS) and magnetic resonance imaging (MRI) for focal prostate brachytherapy. Int J Comput Assist Radiol Surg. 2016;11(6):1015–23.

    PubMed  Google Scholar 

  75. Hellebust TP. Place of modern imaging in brachytherapy planning. Cancer Radiother. 2018;22(4):326–33.

    CAS  PubMed  Google Scholar 

  76. Steggerda. An analysis of the effect of ovoid shields in a selectron-LDR cervical applicator on dose distributions in rectum and bladder. Int J Radiat Oncol Biol Phys. 1997;39:237–45.

    CAS  PubMed  Google Scholar 

  77. Hellebust TP, Kirisits C, Berger D, Perez-Calatayud J, De Brabandere M, De Leeuw A, et al. Recommendations from gynaecological (GYN) GEC-ESTRO working group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol. 2010;96(2):153–60.

    PubMed  Google Scholar 

  78. Viswanathan AN, Dimopoulos J, Kirisits C, Berger D, Pötter R. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys. 2007;68(2):491–8.

    PubMed  Google Scholar 

  79. De Brabandere M, Hoskin P, Haustermans K, Van den Heuvel F, Siebert FA. Prostate post-implant dosimetry: interobserver variability in seed localisation, contouring and fusion. Radiother Oncol. 2012;104(2):192–8.

    PubMed  Google Scholar 

  80. Fransson A, Andreo P, Pötter R. Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol. 2001;177:59–73.

    CAS  PubMed  Google Scholar 

  81. Wills R, Lowe G, Inchley D, Anderson C, Beenstock V, Hoskin P. Applicator reconstruction for HDR cervix treatment planning using images from 0.35T open MR scanner. Radiother Oncol. 2010;94(3):346–52.

    PubMed  Google Scholar 

  82. Perez-Calatayud J, Kuipers F, Ballester F, Granero D, Richart J, Rodriguez S, et al. Exclusive MRI-based tandem and colpostats reconstruction in gynaecological brachytherapy treatment planning. Radiother Oncol. 2009;91(2):181–6.

    PubMed  Google Scholar 

  83. Moerland MA, Wijrdeman HK, Beersma R, Bakker CJG, Battermann JJ. Evaluation of permanent I-125 prostate implants using radiography and magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 1997;37:927–33.

    CAS  PubMed  Google Scholar 

  84. Ménard C, Susil RC, Choyke P, Gustafson GS, Kammerer W, Ning H, et al. MRI-guided HDR prostate brachytherapy in standard 1.5T scanner. Int J Radiat Oncol Biol Phys. 2004;59(5):1414–23.

    PubMed  PubMed Central  Google Scholar 

  85. Rylander S, Buus S, Pedersen EM, Bentzen L, Tanderup K. Dosimetric impact of contouring and needle reconstruction uncertainties in US-, CT- and MRI-based high-dose-rate prostate brachytherapy treatment planning. Radiother Oncol. 2017;123(1):125–32.

    PubMed  Google Scholar 

  86. Nesvacil N, Pötter R, Sturdza A, Hegazy N, Federico M, Kirisits C. Adaptive image- guided brachytherapy for cervical cancer: a combined MRI-/CT-planning technique with MRI only at first fraction. Radiother Oncol. 2013;107(1):75–81.

    PubMed  PubMed Central  Google Scholar 

  87. Schmid M, Crook JM, Batchelar D, Araujo C, Petrik D, Kim D, et al. A phantom study to assess accuracy of needle identification in real-time planning of ultrasound-guided high-dose-rate prostate implants. Brachytherapy. 2013;12(1):56–64.

    PubMed  Google Scholar 

  88. Zheng D, Todor DA. A novel method for accurate needle-tip identification in trans-rectal ultrasound-based high-dose-rate prostate brachytherapy. Brachytherapy. 2011;10(6):466–73.

    PubMed  Google Scholar 

  89. Batchelar D, Gaztanaga M, Schmid M, Araujo C, Bachand F, Crook J. Validation study of ultrasound-based high-dose-rate prostate brachytherapy planning compared with CT-based planning. Brachytherapy. 2014;13(1):75–9.

    PubMed  Google Scholar 

  90. Hrinivich WT, Hoover DA, Surry K, Edirisinghe C, Montreuil J, D'Souza D, et al. Three-dimensional transrectal ultrasound-guided high-dose-rate prostate brachytherapy: a comparison of needle segmentation accuracy with two-dimensional image guidance. Brachytherapy. 2016;15(2):231–9.

    PubMed  Google Scholar 

  91. Hrinivich WT, Hoover DA, Surry K, Edirisinghe C, Velker V, Bauman G, et al. Accuracy and variability of high-dose-rate prostate brachytherapy needle tip localization using live two-dimensional and sagittally reconstructed three-dimensional ultrasound. Brachytherapy. 2017;16(5):1035–43.

    PubMed  Google Scholar 

  92. van Dyk S, Kondalsamy-Chennakesavan S, Schneider M, Bernshaw D, Narayan K. Comparison of measurements of the uterus and cervix obtained by magnetic resonance and transabdominal ultrasound imaging to identify the brachytherapy target in patients with cervix cancer. Int J Radiat Oncol Biol Phys. 2014;88(4):860–5.

    PubMed  Google Scholar 

  93. Mahantshetty U, Khanna N, Swamidas J, Engineer R, Thakur MH, Merchant NH, et al. Trans-abdominal ultrasound (US) and magnetic resonance imaging (MRI) correlation for conformal intracavitary brachytherapy in carcinoma of the uterine cervix. Radiother Oncol. 2012;102(1):130–4.

    PubMed  Google Scholar 

  94. Schmid MP, Potter R, Brader P, Kratochwil A, Goldner G, Kirchheiner K, et al. Feasibility of transrectal ultrasonography for assessment of cervical cancer. Strahlenther Onkol. 2013;189(2):123–8.

    CAS  PubMed  Google Scholar 

  95. Schmid MP, Beaulieu L, Nesvacil N, Pieters BR, Postema AW, Schalk SG, et al. Ultrasound. In: Song WY, Tanderup K, Pieters BR, editors. Emerging technologies in brachytherapy. Medical physics and biomedical engineering. Boca Raton: CRC Press; 2017.

    Google Scholar 

  96. Berger D, Pötter R, Dimopoulos JA, Kirisits C. New Vienna applicator design for distal parametrial disease in cervical cancer. Brachytherapy. 2010;9:S51–S2.

    Google Scholar 

  97. Kirisits C, Lang S, Dimopoulos J, Berger D, Georg D, Pötter R. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;65(2):624–30.

    PubMed  Google Scholar 

  98. Serban M, Kirisits C, de Leeuw A, Potter R, Jurgenliemk-Schulz I, Nesvacil N, et al. Ring versus Ovoids and Intracavitary versus Intracavitary-interstitial applicators in cervical cancer brachytherapy: results from the EMBRACE I study. Int J Radiat Oncol Biol Phys. 2020;106(5):1052–62.

    PubMed  Google Scholar 

  99. Kirchheiner K, Nout RA, Lindegaard JC, Haie-Meder C, Mahantshetty U, Segedin B, et al. Dose-effect relationship and risk factors for vaginal stenosis after definitive radio(chemo)therapy with image-guided brachytherapy for locally advanced cervical cancer in the EMBRACE study. Radiother Oncol. 2016;118(1):160–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley Pieters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pieters, B., Paulsen-Hellebust, T. (2022). Image-Guided Adaptive Brachytherapy. In: Troost, E.G.C. (eds) Image-Guided High-Precision Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-031-08601-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08601-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08600-7

  • Online ISBN: 978-3-031-08601-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics