Skip to main content

Improvement of Text Image Super-Resolution Benefiting Multi-task Learning

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence (IEA/AIE 2022)

Abstract

Text image super-resolution is a pre-processing of scene text recognition, which aims to improve the visual quality of text from low-resolution images. However, existing super-resolution (SR) models designed for general images have difficulty in recovering text from low-resolution images in real scenes. There are several reasons for this, including the fact that the models do not consider text-specific properties and that the background is not important for text images SR. In this paper, we propose a multi-task learning model for reconstruction and SR termed TRSRT using a transformer for text images. Compared to the super-resolution model, the reconstruction model is better at denoising and tends to have structural information about the text. Focusing on this point, the proposed method utilizes these properties of the reconstructed model to the SR model through the transformer. In addition, we attempt to acquire a text-specific model by training with three loss functions including feature-driven loss using a text recognizer. Experimental results on TextZoom show that the proposed method achieves performance comparable to state-of-the-art methods and prove the advantages of multi-task learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qadri, M.T., Asif, M.: Automatic number plate recognition system for vehicle identification using optical character recognition. In: 2009 International Conference on Education Technology and Computer, pp. 335–338 (2009). https://doi.org/10.1109/ICETC.2009.54

  2. Tian, Z., Huang, W., He, T., He, P., Qiao, Yu.: Detecting text in natural image with connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_4

    Chapter  Google Scholar 

  3. Wang, Z., et al.: CAMP: cross-modal adaptive message passing for text-image retrieval. In: ICCV, pp. 5763–5772 (2019). https://doi.org/10.1109/ICCV.2019.005

  4. Dong, S., Zhu, X., Deng, Y., Loy, C.C., Qiao, Y.: Boosting optical character recognition: a super-resolution approach, arXiv preprint arXiv:1506.02211 (2015)

  5. Tran, H.T.M., Ho-Phuoc, T.: Deep laplacian pyramid network for text images super-resolution. In: RIVF, pp. 1–6 (2019)

    Google Scholar 

  6. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  7. Wang, W., et al.: Scene text image super-resolution in the wild. In: ECCV (2020)

    Google Scholar 

  8. Ledig, C., et al.: Photorealistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 4681–4690 (2017)

    Google Scholar 

  9. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  10. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)

    Google Scholar 

  11. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

    Google Scholar 

  12. Kim, S., Hori, T., Watanabe, S.: Joint CTC-attention based end-to-end speech recognition using multi-task learning. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4835–4839. IEEE (2017)

    Google Scholar 

  13. Rad, M.S., et al.: Benefiting from multitask learning to improve single image super-resolution. Neurocomputing 398, 304–313 (2020). https://doi.org/10.1016/j.neucom.2019.07.107

    Article  Google Scholar 

  14. Urazoe, K., Kuroki, N., Kato, Y., Ohtani, S., Hirose, T., Numa, M.: Multi-category image super-resolution with convolutional neural network and multi-task learning. IEICE Trans. Inf. Syst. E104.D(1), 183–193: Released January 01, 2021, Online ISSN 1745–1361. Print ISSN 0916–8532 (2021). https://doi.org/10.1587/transinf.2020EDP7054

  15. Feng, C.-M., Yan, Y., Fu, H., Chen, L., Xu, Y.: Task transformer network for joint MRI reconstruction and super-resolution. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_30

    Chapter  Google Scholar 

  16. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: 2011 International Conference on Computer Vision, pp. 1457–1464. IEEE (2011)

    Google Scholar 

  17. He, P., Huang, W., Qiao, Y., Loy, C.C., Tang, X.: Reading scene text in deep convolutional sequences. arXiv preprint arXiv:1506.04395 (2015)

  18. Jaderberg, M., Vedaldi, A., Zisserman, A.: Deep features for text spotting. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 512–528. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_34

    Chapter  Google Scholar 

  19. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  20. Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: ICML, pp. 369–376 (2006)

    Google Scholar 

  21. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: an attentional scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2035–2048 (2018)

    Article  Google Scholar 

  22. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NeurIPS, pp. 2017–2025 (2015)

    Google Scholar 

  23. Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: a simple and strong baseline for irregular text recognition. In: AAAI, vol. 33, pp. 8610–8617 (2019)

    Google Scholar 

  24. Yang, L., Wang, P., Li, H., Li, Z., Zhang, Y.: A holistic representation guided attention network for scene text recognition. Neurocomputing 414, 67–75 (2020)

    Article  Google Scholar 

  25. Chen, J., Li, B., Xue, X.: Scene text telescope: text-focused scene image super-resolution. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021, pp. 12021–12030 (2021). https://doi.org/10.1109/CVPR46437.2021.01185

  26. Fang, C., Zhu, Y., Liao, L., Ling, X.: TSRGAN: real-world text image super-resolution based on adversarial learning and triplet attention. Neurocomputing 455, 88–96 (2021). https://doi.org/10.1016/j.neucom.2021.05.060. ISSN 0925–2312

  27. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPR (2017)

    Google Scholar 

  28. Sun, J., Sun, J., Xu, Z., Shum, H.: Gradient profile prior and its applications in image super-resolution and enhancement. In: TIP (2011)

    Google Scholar 

  29. Wang, B., Lu, T., Zhang, Y.: Feature-driven super-resolution for object detection. In: 2020 5th International Conference on Control, Robotics and Cybernetics (CRC), pp. 211–215 (2020). https://doi.org/10.1109/CRC51253.2020.9253468

  30. Luo, C., Jin, L., Sun, Z., Moran: a multi-object rectified attention network for scene text recognition. Pattern Recogn., 109–118 (2019)

    Google Scholar 

  31. Lai, W., Huang, J., Ahuja, N., Yang, M.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgements

This study is supported by JSPS/JAPAN KAKENHI (Grants-in-Aid for Scientific Research) #JP20K11955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Honda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Honda, K., Fujita, H., Kurematsu, M. (2022). Improvement of Text Image Super-Resolution Benefiting Multi-task Learning. In: Fujita, H., Fournier-Viger, P., Ali, M., Wang, Y. (eds) Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence. IEA/AIE 2022. Lecture Notes in Computer Science(), vol 13343. Springer, Cham. https://doi.org/10.1007/978-3-031-08530-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08530-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08529-1

  • Online ISBN: 978-3-031-08530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics