Skip to main content

AI Techniques for Forecasting Epidemic Dynamics: Theory and Practice

  • Chapter
  • First Online:
Artificial Intelligence in Covid-19

Abstract

Forecasting epidemic dynamics has been an active area of research for at least two decades. The importance of the topic is evident: policy makers, citizens, and scientists would all like to get accurate and timely forecasts. In contrast to physical systems, the co-evolution of epidemics, individual and collective behavior, viral dynamics, and public policies make epidemic forecasting a problematic task. The situation is even more challenging during a pandemic as has become amply clear during the ongoing COVID-19 pandemic. Researchers worldwide have put in extraordinary efforts to try to forecast the time-varying evolution of the pandemic; despite their best efforts, it is fair to say that the results have been mixed. Several teams have done well on average but failed to forecast upsurges in the cases.

In this chapter, we describe the state-of-the-art in epidemic forecasting, with a particular emphasis on forecasting during an ongoing pandemic. We describe a range of methods that have been developed and discuss the experience of our team in this context. We also summarize several challenges in producing accurate and timely forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cdc.gov/flu/weekly/flusight/index.html.

  2. 2.

    The unit of time (which may be a day, a week, etc.) depends on the epidemic that is being modeled.

  3. 3.

    This is analogous to the transmission rate β introduced under the compartmental model above.

  4. 4.

    With minor modifications, our theoretical results discussed in section “Theoretical Foundations for Forecasting in Network Models” can be shown to hold even when the infectious period for each node is any constant number of time units.

  5. 5.

    A Boolean formula in conjunctive normal form [117] consists of clauses which are connected together by the AND operator. Each clause itself is the OR of negated or unnegated forms of a subset of variables.

  6. 6.

    A matching M of a bipartite graph H(V1, V2, E) is a subset of edges so that no two edges are incident on the same node. When ∣V1 ∣  =  ∣ V2 ∣  = n, a perfect matching of H is a matching of size n.

  7. 7.

    A Boolean formula in disjunctive normal form consists of product terms which are connected together by the OR operator. Each product term is the AND of a subset of negated and/or unnegated variables.

References

  1. Barrios JM, Hochberg YV. Risk perceptions and politics: evidence from the COVID-19 pandemic. J Financ Econ. 2021;142(2):862–79.

    Article  Google Scholar 

  2. Brzezinski A, Kecht V, Van Dijcke D, Wright AL. Science skepticism reduced compliance with COVID-19 shelter-in-place policies in the United States. Nat Hum Behav. 2021;5(11):1519–27.

    Article  Google Scholar 

  3. Fancourt D, Steptoe A, Wright L. The Cummings effect: politics, trust, and behaviours during the COVID-19 pandemic. Lancet. 2020;396(10249):464–5.

    Article  CAS  Google Scholar 

  4. Harman JL, Weinhardt JM, Beck JW, Mai I. Interpreting time-series COVID data: reasoning biases, risk perception, and support for public health measures. Sci Rep. 2021;11(1):1–11.

    Article  Google Scholar 

  5. Levin R, Chao DL, Wenger EA, Proctor JL. Insights into population behavior during the COVID-19 pandemic from cell phone mobility data and manifold learning. Nat Computat Sci. 2021;1(9):588–97.

    Article  Google Scholar 

  6. Van Bavel JJ, Cichocka A, Capraro V, Sjåstad H, Nezlek JB, Pavlović T, Alfano M, Gelfand MJ, Azevedo F, Birtel MD, et al. National identity predicts public health support during a global pandemic. Nat Commun. 2022;13(1):1–14.

    Google Scholar 

  7. Woods ET, Schertzer R, Greenfeld L, Hughes C, Miller-Idriss C. COVID-19, nationalism, and the politics of crisis: a scholarly exchange. Nations National. 2020;26(4):807–25.

    Article  Google Scholar 

  8. Adiga A, Dubhashi D, Lewis B, Marathe M, Venkatramanan S, Vullikanti A. Mathematical models for COVID-19 pandemic: a comparative analysis. J Indian Inst Sci. 2020:1–15.

    Google Scholar 

  9. Borchering RK, Viboud C, Howerton E, Smith CP, Truelove S, Runge MC, Reich NG, Contamin L, Levander J, Salerno J, et al. Modeling of future COVID-19 cases, hospitalizations, and deaths, by vaccination rates and nonpharmaceutical intervention scenarios—United States, April–September 2021. Morb Mortal Wkly Rep. 2021;70(19):719.

    Article  CAS  Google Scholar 

  10. Chen J, Levin S, Eubank S, Mortveit H, Venkatramanan S, Vullikanti A, Marathe M. Networked epidemiology for COVID-19. SIAM News, June 2020.

    Google Scholar 

  11. Eletreby R, Zhuang Y, Carley KM, Yagan O, Poor HV. The effects of evolutionary adaptations on spreading processes in complex networks. Proc Natl Acad Sci. 2020;117(11):5664–70.

    Article  CAS  Google Scholar 

  12. Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.

    Article  CAS  Google Scholar 

  13. Saad-Roy CM, Morris SE, Metcalf CJE, Mina MJ, Baker RE, Farrar J, Holmes EC, Pybus OG, Graham AL, Levin SA, Grenfell BT, Wagner CE. Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science. 2021;372(6540):363–70.

    Article  CAS  Google Scholar 

  14. Wagner CE, Saad-Roy CM, Morris SE, Baker RE, Mina MJ, Farrar J, Holmes EC, Pybus OG, Graham AL, Emanuel EJ, et al. Vaccine nationalism and the dynamics and control of SARS-CoV-2. Science. 2021;373(6562):eabj7364.

    Article  Google Scholar 

  15. Yagan O, Sridhar A, Eletreby R, Levin S, Plotkin JB, Poor HV. Modeling and analysis of the spread of COVID-19 under a multiple-strain model with mutations. Harvard Data Science Review. 2021;4. https://doi.org/10.1162/99608f92.a11bf693. URL https://hdsr.mitpress.mit.edu/pub/2q9jiymv.

  16. Biggerstaff M, Alper D, Dredze M, Fox S, Fung IC-H, Hickmann KS, Lewis B, Rosenfeld R, Shaman J, Tsou M-H, et al. Results from the centers for disease control and prevention’s predict the 2013–2014 influenza season challenge. BMC Infect Dis. 2016;16(1):1–10.

    Article  Google Scholar 

  17. Biggerstaff M, Johansson M, Alper D, Brooks LC, Chakraborty P, Farrow DC, Hyun S, Kandula S, McGowan C, Ramakrishnan N, et al. Results from the second year of a collaborative effort to forecast Influenza seasons in the United States. Epidemics. 2018;24:26–33.

    Article  Google Scholar 

  18. McGowan CJ, Biggerstaff M, Johansson M, Apfeldorf KM, Ben-Nun M, Brooks L, Convertino M, Erraguntla M, Farrow DC, Freeze J, et al. Collaborative efforts to forecast seasonal Influenza in the United States, 2015–2016. Sci Rep. 2019;9(1):1–13.

    Article  CAS  Google Scholar 

  19. Reich NG, Brooks LC, Fox SJ, Kandula S, McGowan CJ, Moore E, Osthus D, Ray EL, Tushar A, Yamana TK, et al. A collaborative multiyear, multimodel assessment of seasonal Influenza forecasting in the United States. Proc Natl Acad Sci. 2019;116(8):3146–54.

    Article  CAS  Google Scholar 

  20. DARPA. CHIKV Challenge announces winners, progress toward forecasting the spread of infectious diseases. 2015. http://www.darpa.mil/news-events/2015-05-27.

  21. Muthiah S, Butler P, Khandpur RP, Saraf P, Self N, Rozovskaya A, Zhao L, Cadena J, Lu C, Vullikanti A, Marathe A, Summers KM, Katz G, Doyle A, Arredondo J, Gupta DK, Mares D, Ramakrishnan N. EMBERS at 4 years: experiences operating an open source indicators forecasting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; 2016. p. 205–14.

    Chapter  Google Scholar 

  22. Adiga A, Wang L, Hurt B, Peddireddy A, Porebski P, Venkatramanan S, Lewis B, Marathe MV. All models are useful: Bayesian ensembling for robust high resolution COVID-19 forecasting. In: KDD ‘21: proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining; 2021. p. 2505–13.

    Chapter  Google Scholar 

  23. Chakraborty P, Lewis B, Eubank S, Brownstein JS, Marathe M, Ramakrishnan N. What to know before forecasting the Flu. PLoS Comput Biol. 2018;14(10):e1005964.

    Article  Google Scholar 

  24. Tabataba FS, Chakraborty P, Ramakrishnan N, Venkatramanan S, Chen J, Lewis B, Marathe M. A framework for evaluating epidemic forecasts. BMC Infect Dis. 2017;17(1):345.

    Article  Google Scholar 

  25. Tabataba FS, Lewis B, Hosseinipour M, Tabataba FS, Venkatramanan S, Chen J, Higdon D, Marathe M. Epidemic forecasting framework combining agent-based models and smart beam particle filtering. In: 2017 IEEE international conference on data mining (ICDM). IEEE; 2017. p. 1099–104.

    Chapter  Google Scholar 

  26. Drake JM. Fundamental limits to the precision of early warning systems for epidemics of infectious diseases. PLoS Med. 2005;2:461–2.

    Article  Google Scholar 

  27. Drake JM. Limits to forecasting precision for outbreaks of directly transmitted diseases. PLoS Med. 2006;3:57–62.

    Google Scholar 

  28. May RM. Network structure and the biology of populations. Trends Ecol Evol. 2006;21(7):394–9.

    Article  Google Scholar 

  29. Jacob F. Evolution and tinkering. Science. 1977;196:1161–6.

    Article  CAS  Google Scholar 

  30. Rosenkrantz DJ, Vullikanti A, Ravi SS, Stearns RE, Levin S, Poor HV, Marathe MV. Fundamental limitations on efficiently forecasting epidemic measures in network models. Proc Nat Acad Sci (PNAS). 2022;119(4):1–7.

    Article  Google Scholar 

  31. Nsoesie E, Mararthe M, Brownstein J. Forecasting peaks of seasonal Influenza epidemics. PLoS Curr. 2013;5.

    Google Scholar 

  32. Yang S, Santillana M, Kou SC. Accurate estimation of Influenza epidemics using Google search data via ARGO. Proc Natl Acad Sci. 2015;112(47):14473–8.

    Article  CAS  Google Scholar 

  33. Rangarajan P, Mody SK, Marathe M. Forecasting Dengue and Influenza incidences using a sparse representation of Google trends, electronic health records, and time series data. PLoS Comput Biol. 2019;15(11):e1007518.

    Article  Google Scholar 

  34. Kandula S, Hsu D, Shaman J. Subregional nowcasts of seasonal Influenza using search trends. J Med Internet Res. 2017;19(11):e370.

    Article  Google Scholar 

  35. Soebiyanto RP, Adimi F, Kiang RK. Modeling and predicting seasonal Influenza transmission in warm regions using climatological parameters. PLoS One. 2010;5(3):e9450.

    Article  Google Scholar 

  36. Paul MJ, Dredze M, Broniatowski D. Twitter improves Influenza forecasting. PLoS Curr. 2014;6.

    Google Scholar 

  37. Wang Z, Chakraborty P, Mekaru SR, Brownstein JS, Ye J, Ramakrishnan N. Dynamic Poisson autoregression for Influenza-like-illness case count prediction. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining; 2015. p. 1285–94.

    Chapter  Google Scholar 

  38. Dugas AF, Jalalpour M, Gel Y, Levin S, Torcaso F, Igusa T, Rothman RE. Influenza forecasting with Google Flu Trends. PLoS One. 2013;8(2):e56176.

    Article  CAS  Google Scholar 

  39. Radin JM, Wineinger NE, Topol EJ, Steinhubl SR. Harnessing wearable device data to improve state-level real-time surveillance of Influenza-like illness in the USA: a population-based study. Lancet Digit Health. 2020;2(2):e85–93.

    Article  Google Scholar 

  40. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Statist Soc Ser B (Methodol). 1996;58(1):267–88.

    Google Scholar 

  41. Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. J Optim Theory Appl. 2001;109(3):475–94.

    Article  Google Scholar 

  42. Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Flexible modeling of epidemics with an empirical bayes framework. PLoS Comput Biol. 2015;11(8):e1004382.

    Article  Google Scholar 

  43. Viboud C, Boëlle P-Y, Carrat F, Valleron A-J, Flahault A. Prediction of the spread of Influenza epidemics by the method of analogues. Am J Epidemiol. 2003;158(10):996–1006.

    Article  Google Scholar 

  44. Van Panhuis WG, Hyun S, Blaney K, Marques ET Jr, Coelho GE, Siqueira JB Jr, Tibshirani R, da Silva Jr JB, Rosenfeld R. Risk of Dengue for tourists and teams during the World Cup 2014 in Brazil. PLoS Negl Trop Dis. 2014;8(7):e3063.

    Article  Google Scholar 

  45. Petropoulos F, Makridakis S. Forecasting the novel coronavirus COVID-19. PLoS One. 2020;15(3):e0231236.

    Article  CAS  Google Scholar 

  46. Evensen G. Data assimilation: the ensemble Kalman filter. Springer; 2009.

    Book  Google Scholar 

  47. Anderson JL. An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev. 2001;129(12):2884–903.

    Article  Google Scholar 

  48. Arulampalam MS, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process. 2002;50(2):174–88.

    Article  Google Scholar 

  49. Yang W, Karspeck A, Shaman J. Comparison of filtering methods for the modeling and retrospective forecasting of Influenza epidemics. PLoS Comput Biol. 2014;10(4):e1003583.

    Article  Google Scholar 

  50. Shaman J, Karspeck A. Forecasting seasonal outbreaks of Influenza. Proc Natl Acad Sci. 2012;109(50):20425–30.

    Article  CAS  Google Scholar 

  51. Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M. Real-time Influenza forecasts during the 2012–2013 season. Nat Commun. 2013;4:2837.

    Article  Google Scholar 

  52. Yang W, Cowling BJ, Lau EH, Shaman J. Forecasting Influenza epidemics in Hong Kong. PLoS Comput Biol. 2015;11(7):e1004383.

    Article  Google Scholar 

  53. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2(5):359–66.

    Article  Google Scholar 

  54. Aburas HM, Cetiner BG, Sari M. Dengue confirmed-cases prediction: a neural network model. Expert Syst Appl. 2010;37(6):4256–60.

    Article  Google Scholar 

  55. Wahyunggoro O, Permanasari AE, Chamsudin A. Utilization of neural network for disease forecasting. In: 59th ISI world statistics congress. Citeseer; 2013. p. 549–54.

    Google Scholar 

  56. Xu Q, Gel YR, Ramirez LL, Nezafati K, Zhang Q, Tsui K-L. Forecasting Influenza in Hong Kong with Google search queries and statistical model fusion. PLoS One. 2017;12(5):e0176690.

    Article  Google Scholar 

  57. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. 2014.

    Google Scholar 

  58. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.

    Article  CAS  Google Scholar 

  59. Volkova S, Ayton E, Porterfield K, Corley CD. Forecasting Influenza-like illness dynamics for military populations using neural networks and social media. PLoS One. 2017;12(12):e0188941.

    Article  Google Scholar 

  60. Venna SR, Tavanaei A, Gottumukkala RN, Raghavan VV, Maida AS, Nichols S. A novel data-driven model for real-time Influenza forecasting. IEEE Access. 2019;7:7691–701.

    Article  Google Scholar 

  61. Zhu X, Fu B, Yang Y, Ma Y, Hao J, Chen S, Liu S, Li T, Liu S, Guo W, et al. Attention-based recurrent neural network for Influenza epidemic prediction. BMC Bioinform. 2019;20(18):1–10.

    Google Scholar 

  62. Adhikari B, Xu X, Ramakrishnan N, Prakash BA. EpiDeep: exploiting embeddings for epidemic forecasting. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining; 2019. p. 577–86.

    Chapter  Google Scholar 

  63. Rodriguez A, Tabassum A, Cui J, Xie J, Ho J, Agarwal P, Adhikari B, Prakash BA. DeepCOVID: an operational deep learning-driven framework for explainable real-time COVID-19 forecasting. medRxiv. 2020.

    Google Scholar 

  64. Chimmula VKR, Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons & Fractals; 2020. p. 109864.

    Google Scholar 

  65. Wu Y, Yang Y, Nishiura H, Saitoh M. Deep learning for epidemiological predictions. In: The 41st international ACM SIGIR conference on research & development in information retrieval. ACM; 2018. p. 1085–8.

    Google Scholar 

  66. Ramchandani A, Fan C, Mostafavi A. DeepCOVIDNet: an interpretable deep learning model for predictive surveillance of COVID-19 using heterogeneous features and their interactions. arXiv preprint arXiv:2008.00115. 2020.

    Google Scholar 

  67. Deng S, Wang S, Rangwala H, Wang L, Ning Y. Cola-GNN: cross-location attention based graph neural networks for long-term ILI prediction. In: Proceedings of the 29th ACM international conference on information and knowledge management; 2020. p. 245–54.

    Google Scholar 

  68. Kapoor A, Ben X, Liu L, Perozzi B, Barnes M, Blais M, O’Banion S. Examining COVID-19 forecasting using spatio-temporal graph neural networks. arXiv preprint arXiv:2007.03113. 2020.

    Google Scholar 

  69. Wang L, Ben X, Adiga A, Sadilek A, Tendulkar A, Venkatramanan S, Vullikanti A, Aggarwal G, Talekar A, Chen J, et al. Using mobility data to understand and forecast COVID-19 dynamics. In: IJCAI 2021 workshop on AI for social good; 2021.

    Google Scholar 

  70. Wang L, Adiga A, Chen J, Lewis B, Sadilek A, Venkatramanan S, Marathe M. Combining theory and data driven approaches for epidemic forecasts. CRC Press (to appear). 2022. https://sites.google.com/vt.edu/sgml-book.

  71. Zhao L, Chen J, Chen F, Wang W, Lu C-T, Ramakrishnan N. Simnest: social media nested epidemic simulation via online semi-supervised deep learning. In: 2015 IEEE international conference on data mining. IEEE; 2015. p. 639–48.

    Chapter  Google Scholar 

  72. Hua T, Reddy CK, Zhang L, Wang L, Zhao L, Lu C-T, Ramakrishnan N. Social media based simulation models for understanding disease dynamics. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization; 2018. p. 3797–804.

    Google Scholar 

  73. Wang L, Chen J, Marathe M. DEFSI: deep learning based epidemic forecasting with synthetic information. In: Proceedings of the AAAI conference on artificial intelligence, vol. 33; 2019. p. 9607–12.

    Google Scholar 

  74. Dandekar R, Rackauckas C, Barbastathis G. A machine learning-aided global diagnostic and comparative tool to assess effect of quarantine control in COVID-19 spread. Patterns. 2020;1(9):100145.

    Article  CAS  Google Scholar 

  75. Gao J, Sharma R, Qian C, Glass LM, Spaeder J, Romberg J, Sun J, Xiao C. STAN: spatio-temporal attention network for pandemic prediction using real-world evidence. J Am Med Inform Assoc. 2021;28(4):733–43.

    Article  Google Scholar 

  76. Ray EL et al. Challenges in training ensembles to forecast COVID-19 cases and deaths in the United States. International Institute of Forecasters; 2021.

    Google Scholar 

  77. Morgan JJ, Wilson OC, Menon PG. The wisdom of crowds approach to Influenza-rate forecasting. In: ASME international mechanical engineering congress and exposition, vol. 52026, page V003T04A048. American Society of Mechanical Engineers; 2018.

    Google Scholar 

  78. Taylor KS, Taylor JW. Harnessing the wisdom of the crowd to forecast incident and cumulative COVID-19 mortality in the United States. medRxiv. 2021.

    Google Scholar 

  79. Farrow DC, Brooks LC, Hyun S, Tibshirani RJ, Burke DS, Rosenfeld R. A human judgment approach to epidemiological forecasting. PLoS Comput Biol. 2017;13(3):e1005248.

    Article  Google Scholar 

  80. Li EY, Tung C-Y, Chang S-H. The wisdom of crowds in action: forecasting epidemic diseases with a web-based prediction market system. Int J Med Inform. 2016;92:35–43.

    Article  CAS  Google Scholar 

  81. Cheng J, Adamic LA, Kleinberg JM, Leskovec J. Do cascades recur? In: Proceedings of the 25th international conference on world wide web, WWW 2016, Montreal, Canada, April 11–15; 2016. p. 671–81.

    Google Scholar 

  82. Martin T, Hofman JM, Sharma A, Anderson A, Watts DJ. Exploring limits to prediction in complex social systems. In: Proceedings of the 25th international conference on world wide web, WWW 2016, Montreal, Canada, April 11–15, 2016. p. 683–94.

    Google Scholar 

  83. Hofman JM, Sharma A, Watts DJ. Prediction and explanation in social systems. Science. 2017;355:486–8.

    Article  CAS  Google Scholar 

  84. Lazer D, Kennedy R, King G, Vespignani A. The parable of Google Flu: traps in Big Data analysis. Science. 2014;343:1203–5.

    Article  CAS  Google Scholar 

  85. Pinto PC, Thiran P, Vetterli M. Locating the source of diffusion in large-scale networks. Phys Rev Lett. 2012;109(6):1–4.

    Article  Google Scholar 

  86. Karrer B, Newman ME. Message passing approach for general epidemic models. Phys Rev E. 2010;82(1):016101.

    Article  Google Scholar 

  87. Altarelli F, Braunstein A, Dall’Asta L, Lage-Castellanos A, Zecchina R. Bayesian inference of epidemics on networks via Belief Propagation. Phys Rev Lett. 2014;112:118701.

    Article  Google Scholar 

  88. Lokhov AY, Mézard M, Ohta H, Zdeborová L. Inferring the origin of an epidemic with a dynamic message-passing algorithm. Phys Rev E. 2014;90:012801.

    Article  Google Scholar 

  89. Althouse BM, Wenger EA, Miller JC, Scarpino SV, Allard A, Hébert-Dufresne L, Hu H. Superspreading events in the transmission dynamics of SARS-CoV-2: opportunities for interventions and control. PLoS Biol. 2020;18(11):e3000897.

    Article  CAS  Google Scholar 

  90. Scarpino SV, Petri G. On the predictability of infectious disease outbreaks. Nat Commun. 2019;10:1–8. https://doi.org/10.1038/s41467-019-08616-0.

    Article  CAS  Google Scholar 

  91. Brauer F, van den Driessche P, Wu J. Mathematical epidemiology, volume 1945 of Springer Verlag, Lecture Notes in Mathematics. Springer; 2008.

    Google Scholar 

  92. Marathe MV, Vullikanti AK. Computational Epidemiology. Commun ACM. 2013;56(7):88–96.

    Article  Google Scholar 

  93. Newman M. The structure and function of complex networks. SIAM Rev. 2003;45(2):167–256.

    Article  Google Scholar 

  94. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew S, Tan CC, Samore MH, Fisman D, Murray M. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300:1966–70.

    Article  CAS  Google Scholar 

  95. Gneiting T, Raftery AE. Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc. 2007;102(477):359–78.

    Article  CAS  Google Scholar 

  96. Bracher J, Ray EL, Gneiting T, Reich NG. Evaluating epidemic forecasts in an interval format. PLoS Comput Biol. 2021;17(2):e1008618.

    Article  CAS  Google Scholar 

  97. Arnold T, Bien J, Brooks L, Colquhoun S, Farrow D, Grabman J, Maynard-Zhang P, Reinhart A, Tibshirani R. Covidcast: client for Delphi’s COVIDcast epidata API. 2021. URL https://cmu-delphi.github.io/covidcast/covidcastR/. R package version 0.4.2.

  98. Viboud C, Sun K, Gaffey R, Ajelli M, Fumanelli L, Merler S, Zhang Q, Chowell G, Simonsen L, Vespignani A, et al. The RAPIDD Ebola forecasting challenge: synthesis and lessons learnt. Epidemics. 2018;22:13–21.

    Article  Google Scholar 

  99. Yamana TK, Kandula S, Shaman J. Superensemble forecasts of Dengue outbreaks. J R Soc Interface. 2016;13(123):20160410.

    Article  Google Scholar 

  100. Burgers G, Jan van Leeuwen P, Evensen G. Analysis scheme in the ensemble Kalman filter. Mon Weather Rev. 1998;126(6):1719–24.

    Article  Google Scholar 

  101. Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International conference on machine learning; 2016. p. 1050–9.

    Google Scholar 

  102. Kiefer J. Sequential minimax search for a maximum. Proc Am Math Soc. 1953;4(3):502–6.

    Article  Google Scholar 

  103. Raftery AE, Gneiting T, Balabdaoui F, Polakowski M. Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev. 2005;133(5):1155–74.

    Article  Google Scholar 

  104. Yamana TK, Kandula S, Shaman J. Individual versus superensemble forecasts of seasonal Influenza outbreaks in the United States. PLoS Comput Biol. 2017;13(11):e1005801.

    Article  Google Scholar 

  105. Bilmes JA, et al. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Int Comp Sci Inst. 1998;4(510):126.

    Google Scholar 

  106. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Statist Soc Se B (Methodol). 1977;39(1):1–22.

    Google Scholar 

  107. Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging: a tutorial. Statist Sci. 1999;14(4):382–401.

    Google Scholar 

  108. COVID-Hub. The COVID-19 Forecast Hub community. 2021. https://covid19forecasthub.org/.

  109. Bai L, Yao L, Li C, Wang X, Wang C. Adaptive graph convolutional recurrent network for traffic forecasting. arXiv preprint arXiv:2007.02842. 2020.

    Google Scholar 

  110. Lai G, Chang W-C, Yang Y, Liu H. Modeling long-and short-term temporal patterns with deep neural networks. In: The 41st international ACM SIGIR conference on research & development in information retrieval; 2018. p. 95–104.

    Google Scholar 

  111. Li Y, Yu R, Shahabi C, Liu Y. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. 2017.

    Google Scholar 

  112. Wu Z, Pan S, Long G, Jiang J, Zhang C. Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121. 2019.

    Google Scholar 

  113. Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C. Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining; 2020. p. 753–63.

    Chapter  Google Scholar 

  114. Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875. 2017.

    Google Scholar 

  115. Karpatne A, Atluri G, Faghmous JH, Steinbach M, Banerjee A, Ganguly A, Shekhar S, Samatova N, Kumar V. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans Knowl Data Eng. 2017;29(10):2318–31.

    Article  Google Scholar 

  116. Wang L, Adiga A, Chen J, Sadilek A, Venkatramanan S, Marathe M. CausalGNN: causal-based graph neural networks for spatio-temporal epidemic forecasting. In: Proceedings of the 36th AAAI conference in artificial intelligence (to appear). AAAI Press; 2022.

    Google Scholar 

  117. Garey MR, Johnson DS. Computers and intractability: a guide to the theory of NP-completeness. San Francisco, CA: W. H. Freeman and Co.; 1979.

    Google Scholar 

  118. Valiant LG. The complexity of enumeration and reliability problems. SIAM J Comput. 1979;8(3):410–21.

    Article  Google Scholar 

  119. Arora S, Barak B. Computational complexity: a modern approach. New York, NY: Cambridge University Press; 2009.

    Book  Google Scholar 

  120. Vadhan S. The complexity of counting in sparse, regular and planar graphs. SIAM J Comput. 2001;31(2):398–427.

    Article  Google Scholar 

  121. Karp RM, Luby M. Monte-Carlo algorithms for the planar multiterminal network reliability problem. J Complex. 1985;1(1):45–64.

    Article  Google Scholar 

  122. Saha S, Adiga A, Prakash BA, Vullikanti AKS. Approximation algorithms for reducing the spectral radius to control epidemic spread. In: Venkatasubramanian S, Ye J, editors. Proceedings of the 2015 SIAM international conference on data mining, Vancouver, BC, Canada, April 30—May 2, 2015. SIAM; 2015. p. 568–76.

    Google Scholar 

  123. Sambaturu P, Adhikari B, Prakash BA, Venkatramanan S, Vullikanti A. Designing effective and practical interventions to contain epidemics. In: Seghrouchni AEF, Sukthankar G, An B, Yorke-Smith N, editors. Proceedings of the 19th international conference on autonomous agents and multiagent systems, AAMAS ‘20, Auckland, New Zealand, May 9–13, 2020. International Foundation for Autonomous Agents and Multiagent Systems; 2020. p. 1187–95.

    Google Scholar 

  124. Shah D, Zaman T. Detecting sources of computer viruses in networks: theory and experiment. In: SIGMETRICS 2010, proceedings of the 2010 ACM SIGMETRICS international conference on measurement and modeling of computer systems, New York, New York, USA, 14–18 June 2010. ACM; 2010. p. 203–14.

    Google Scholar 

  125. Wagner MM, Moore AW, Aryel RM. Handbook of biosurveillance. Elsevier; 2011.

    Google Scholar 

  126. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–4.

    Article  CAS  Google Scholar 

  127. Robishaw JD, Alter SM, Solano JJ, Shih RD, DeMets DL, Maki DG, Hennekens CH. Genomic surveillance to combat COVID-19: challenges and opportunities. Lancet Microbe. 2021;2(9):e481–4.

    Article  CAS  Google Scholar 

  128. The COVID-19 Genomics UK (COG-UK) Consortium. An integrated national scale SARS-CoV-2 genomic surveillance network. The Lancet Microbe. 2020;1(3):e99.

    Article  Google Scholar 

  129. Shu Y, McCauley J. GISAID: global initiative on sharing all Influenza data–from vision to reality. Eur Secur. 2017;22(13):30494.

    Google Scholar 

Download references

Acknowledgments

We thank members of the Biocomplexity COVID-19 Response Team and the Network Systems Science and Advanced Computing (NSSAC) Division of the University of Virginia for their thoughtful comments and suggestions related to epidemic modeling and response support. This work has been partially supported by DTRA (Contract HDTRA1-19-D-0007), University of Virginia Strategic Investment Fund award number SIF160, VDH Grant PV-BII VDH COVID-19 Modeling Program VDH-21-501-0135, NSF XSEDE Grant TG-BIO210084, National Institutes of Health (NIH) Grants 1R01GM109718, 2R01GM109718, The James S. McDonnell Foundation twenty-first Century Science Initiative Collaborative Award in Understanding Dynamic and Multi-scale Systems, the C3.ai Digital Transformation Institute and Microsoft Corporation, Gift from Google, LLC, and the National Science Foundation (NSF) grants IIS-1633028 (BIG DATA), CMMI-1745207 (EAGER), OAC-1916805 (CINES), CCF-1918656 (Expeditions), CNS-2028004 (RAPID), OAC-2027541 (RAPID), CCF-2142997 (RAPID), CNS-2041952 (PREPARE), IIS-1908530, IIS-1955797, IIS-2027848, CNS-2027908 and CCF1917819. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Vincent Poor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adiga, A. et al. (2022). AI Techniques for Forecasting Epidemic Dynamics: Theory and Practice. In: Lidströmer, N., Eldar, Y.C. (eds) Artificial Intelligence in Covid-19. Springer, Cham. https://doi.org/10.1007/978-3-031-08506-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08506-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08505-5

  • Online ISBN: 978-3-031-08506-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics