Skip to main content

Predicting Argument Density from Multiple Annotations

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2022)

Abstract

Annotating a corpus with argument structures is a complex task, and it is even more challenging when addressing text genres where argumentative discourse markers do not abound. We explore a corpus of opinion articles annotated by multiple annotators, providing diverse perspectives of the argumentative content therein. New annotation aggregation methods are explored, diverging from the traditional ones that try to minimize presumed errors from annotator disagreement. The impact of our methods is assessed for the task of argument density prediction, seen as an initial step in the argument mining pipeline. We evaluate and compare models trained for this regression task in different generated datasets, considering their prediction error and also from a ranking perspective. Results confirm the expectation that addressing argument density from a ranking perspective is more promising than looking at the problem as a mere regression task. We also show that probabilistic aggregation, which weighs tokens by considering all annotators, is a more interesting approach, achieving encouraging results as it accommodates different annotator perspectives. The code and models are publicly available at https://github.com/DARGMINTS/argument-density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.publico.pt/.

  2. 2.

    This does not hold for the z-test “All” vs. \(\langle A, C, D \rangle \) (probabilistic) where the p-value is 0.059, although it stays very close to a statistical significance.

  3. 3.

    https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ndcg_score.html.

References

  1. Al-Khatib, K., Wachsmuth, H., Kiesel, J., Hagen, M., Stein, B.: A news editorial corpus for mining argumentation strategies. In: Proceedings of COLING 2016, Osaka, Japan, pp. 3433–3443 (2016)

    Google Scholar 

  2. Bal, B.K., Saint Dizier, P.: Towards building annotated resources for analyzing opinions and argumentation in news editorials. In: Proceedings 7th Language Resources and Evaluation Conference, ELRA, Valletta, Malta (2010)

    Google Scholar 

  3. Basile, V.: It’s the end of the gold standard as we know it. In: Baldoni, M., Bandini, S. (eds.) AIxIA 2020. LNCS (LNAI), vol. 12414, pp. 441–453. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77091-4_26

    Chapter  Google Scholar 

  4. Basile, V., et al.: We need to consider disagreement in evaluation. In: Proceedings 1st Workshop on Benchmarking: Past, Present and Future, pp. 15–21. ACL, Online (2021)

    Google Scholar 

  5. Cunningham, H., et al.: Developing Language Processing Components with GATE Version 8 (a User Guide), University of Sheffield Department of Computer Science (2014)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings 2019 NAACL, pp. 4171–4186. ACL, Minneapolis, Minnesota (2019)

    Google Scholar 

  7. Dumitrache, A., Inel, O., Aroyo, L., Timmermans, B., Welty, C.: Crowdtruth 2.0: Quality metrics for crowdsourcing with disagreement. arXiv preprint arXiv:1808.06080 (2018)

  8. Eger, S., Daxenberger, J., Gurevych, I.: Neural end-to-end learning for computational argumentation mining. In: Proceedings 55th Annual Meeting of the ACL, pp. 11–22. ACL, Vancouver, Canada (2017)

    Google Scholar 

  9. Goudas, T., Louizos, C., Petasis, G., Karkaletsis, V.: Argument extraction from news, blogs, and social media. In: Likas, A., Blekas, K., Kalles, D. (eds.) Artificial Intelligence: Methods and Applications, pp. 287–299. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  10. Krahmer, E., Theune, M. (eds.): EACL/ENLG -2009. LNCS (LNAI), vol. 5790. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15573-4

    Book  Google Scholar 

  11. Krippendorff, K.: Measuring the reliability of qualitative text analysis data. Qual. Quant. 38, 787–800 (2004)

    Article  Google Scholar 

  12. Lawrence, J., Reed, C.: Argument mining: a survey. Comput. Linguist. 45(4), 765–818 (2019)

    Article  Google Scholar 

  13. Levy, R., Bilu, Y., Hershcovich, D., Aharoni, E., Slonim, N.: Context dependent claim detection. In: Proceedings COLING 2014, pp. 1489–1500. ACL, Dublin, Ireland (2014)

    Google Scholar 

  14. Lippi, M., Torroni, P.: Argumentation mining: state of the art and emerging trends. ACM Trans. Int. Technol. 16(2), 1–25 (2016)

    Article  Google Scholar 

  15. Meyer, C.M., Mieskes, M., Stab, C., Gurevych, I.: DKPro agreement: An open-source Java library for measuring inter-rater agreement. In: Proceedings COLING 2014, pp. 105–109. ACL, Dublin, Ireland (2014)

    Google Scholar 

  16. Moens, M.F.: Argumentation mining: how can a machine acquire common sense and world knowledge? Argument Comput. 9(1), 1–14 (2017)

    Article  Google Scholar 

  17. Ovesdotter Alm, C.: Subjective natural language problems: motivations, applications, characterizations, and implications. In: Proceedings 49th Annual Meeting of the ACL, pp. 107–112. ACL, Portland, Oregon, USA (2011)

    Google Scholar 

  18. Palau, R.M., Moens, M.F.: Argumentation mining: the detection, classification and structure of arguments in text. In: Proceedings 12th International Conference on Artificial Intelligence and Law, p. 98–107. ACM, New York, NY, USA (2009)

    Google Scholar 

  19. Park, J., Cardie, C.: Identifying appropriate support for propositions in online user comments. In: Proceedings 1st Workshop on Argumentation Mining, pp. 29–38. ACL (2014)

    Google Scholar 

  20. Pavlick, E., Kwiatkowski, T.: Inherent disagreements in human textual inferences. Trans. Assoc. Comput. Linguist. 7, 677–694 (2019)

    Article  Google Scholar 

  21. Peldszus, A., Stede, M.: Joint prediction in MST-style discourse parsing for argumentation mining. In: Proceedings EMNLP, pp. 938–948. ACL, Lisbon, Portugal (2015)

    Google Scholar 

  22. Plank, B., Hovy, D., Søgaard, A.: Linguistically debatable or just plain wrong? In: Proceedings 52nd Annual Meeting of the ACL. pp. 507–511. ACL, Baltimore, Maryland (2014)

    Google Scholar 

  23. Rinott, R., Dankin, L., Alzate Perez, C., Khapra, M.M., Aharoni, E., Slonim, N.: Show me your evidence - an automatic method for context dependent evidence detection. In: Proceedings 2015 EMNLP, pp. 440–450. ACL, Lisbon, Portugal (2015)

    Google Scholar 

  24. Rocha, G., et al.: Annotating arguments in a corpus of opinion articles. In: Proceedings 13th Language Resources and Evaluation Conference, ELRA (2022)

    Google Scholar 

  25. Saint-Dizier, P.: Challenges of argument mining: Generating an argument synthesis based on the qualia structure. In: Proceedings 9th International Natural Language Generation Conference, pp. 79–83. ACL, Edinburgh, UK (2016)

    Google Scholar 

  26. Schaefer, R., Stede, M.: Argument mining on twitter: a survey. IT-Inf. Technol. 63(1), 45–58 (2021)

    Google Scholar 

  27. Simpson, E.D., Gurevych, I.: A Bayesian approach for sequence tagging with crowds. In: Proceedings 2019 EMNLP and 9th IJCNLP, pp. 1093–1104. ACL, Hong Kong, China (2019)

    Google Scholar 

  28. Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 46–56. Association for Computational Linguistics, Doha, Qatar (2014)

    Google Scholar 

  29. Stab, C., Miller, T., Schiller, B., Rai, P., Gurevych, I.: Cross-topic argument mining from heterogeneous sources. In: Proceedings 2018 EMNLP, pp. 3664–3674. ACL (2018)

    Google Scholar 

  30. Teufel, S.: Argumentative Zoning: Information Extraction from Scientific Text. Ph.D. thesis, University of Edinburgh (1999)

    Google Scholar 

  31. Teufel, S., Siddharthan, A., Batchelor, C.: Towards discipline-independent argumentative zoning: evidence from chemistry and computational linguistics. In: Proceedings 2009 EMNLP, pp. 1493–1502. ACL, USA (2009)

    Google Scholar 

  32. Trautmann, D., Daxenberger, J., Stab, C., Schütze, H., Gurevych, I.: Fine-grained argument unit recognition and classification. In: Proceedings of the AAAI Conference on AI, vol. 34, no. 05, pp. 9048–9056 (2020)

    Google Scholar 

  33. Visser, J., Konat, B., Duthie, R., Koszowy, M., Budzynska, K., Reed, C.: Argumentation in the 2016 US presidential elections: annotated corpora of television debates and social media reaction. Lang. Res. Eval. 54(1), 123–154 (2019). https://doi.org/10.1007/s10579-019-09446-8

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by project DARGMINTS (POCI/01/0145/FEDER/031460), LIACC (FCT/UID/ CEC/0027/2020), INESC-ID (UIDB/50021/2020) and CLUP (UIDB/00022/2020), funded by Fundação para a Ciência e a Tecnologia (FCT). Gil Rocha is supported by a PhD studentship (SFRH/BD/140125/2018) from FCT. Bernardo Leite is supported by a PhD studentship (2021.05432.BD) from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Trigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rocha, G. et al. (2022). Predicting Argument Density from Multiple Annotations. In: Rosso, P., Basile, V., Martínez, R., Métais, E., Meziane, F. (eds) Natural Language Processing and Information Systems. NLDB 2022. Lecture Notes in Computer Science, vol 13286. Springer, Cham. https://doi.org/10.1007/978-3-031-08473-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08473-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08472-0

  • Online ISBN: 978-3-031-08473-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics