Skip to main content

Detection Accuracy for Evaluating Compositional Explanations of Units

  • Conference paper
  • First Online:
AIxIA 2021 – Advances in Artificial Intelligence (AIxIA 2021)

Abstract

The recent success of deep learning models in solving complex problems and in different domains has increased interest in understanding what they learn. Therefore, different approaches have been employed to explain these models, one of which uses human-understandable concepts as explanations. Two examples of methods that use this approach are Network Dissection [5] and Compositional explanations [23]. The former explains units using atomic concepts, while the latter makes explanations more expressive, replacing atomic concepts with logical forms. While intuitively, logical forms are more informative than atomic concepts, it is not clear how to quantify this improvement, and their evaluation is often based on the same metric that is optimized during the search-process and on the usage of hyper-parameters to be tuned. In this paper, we propose to use as evaluation metric the Detection Accuracy, which measures units’ consistency of detection of their assigned explanations. We show that this metric (1) evaluates explanations of different lengths effectively, (2) can be used as a stopping criterion for the compositional explanation search, eliminating the explanation length hyper-parameter, and (3) exposes new specialized units whose length 1 explanations are the perceptual abstractions of their longer explanations. Code available at https://github.com/KRLGroup/detacc-compexp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adebayo, J., Gilmer, J., Muelly, M. Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps (2018). http://arxiv.org/abs/1810.03292

  2. Alqahtani, A., Xie, X., Jones, M.W., Essa, E.: Pruning CNN filters via quantifying the importance of deep visual representations. Comput. Vis. Image Underst. 208, 103220 (2021). ISSN 1077–3142. https://doi.org/10.1016/j.cviu.2021.103220, https://www.sciencedirect.com/science/article/pii/S1077314221000643

  3. Ancona, M., Ceolini, E., Öztireli, A.C., Gross, M.H.: A unified view of gradient-based attribution methods for deep neural networks (2017). http://arxiv.org/abs/1711.06104

  4. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020). ISSN 1566–2535. https://doi.org/10.1016/j.inffus.2019.12.012, https://www.sciencedirect.com/science/article/pii/S1566253519308103

  5. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations (2017). http://arxiv.org/abs/1704.05796

  6. Dalvi, F., et al.: Neurox: a toolkit for analyzing individual neurons in neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 9851–9852 (2019). https://doi.org/10.1609/aaai.v33i01.33019851, https://ojs.aaai.org/index.php/AAAI/article/view/5063

  7. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0210–0215 (2018). https://doi.org/10.23919/MIPRO.2018.8400040

  8. Ghorbani, A., Wexler, J., Zou, J., Kim, B.: Towards automatic concept-based explanations (2019)

    Google Scholar 

  9. Gonzalez-Garcia, A., Modolo, D., Ferrari, V.: Do semantic parts emerge in convolutional neural networks? (2016). http://arxiv.org/abs/1607.03738

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  11. Hilton, D.J.: Mental models and causal explanation: judgements of probable cause and explanatory relevance. Thinking Reasoning 2(4), 273–308 (1996)

    Google Scholar 

  12. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks (2016). http://arxiv.org/abs/1608.06993

  13. Kim, B., Koyejo, O., Khanna, R.: Examples are not enough, learn to criticize! criticism for interpretability. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, 5–10 December 2016, Barcelona, Spain, pp. 2280–2288 (2016). https://proceedings.neurips.cc/paper/2016/hash/5680522b8e2bb01943234bce7bf84534-Abstract.html

  14. Kim, B., et al.: Interpretability beyond feature attribution: quantitative Testing with Concept Activation Vectors (TCAV) (2018)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates Inc (2012). https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

  16. Le, Q.V., et al.: Building high-level features using large scale unsupervised learning (2011). http://arxiv.org/abs/1112.6209

  17. Lin, Y., Lee, W., Celik, Z.B.: What do you see? evaluation of explainable artificial intelligence (XAI) interpretability through neural backdoors (2020). https://arxiv.org/abs/2009.10639

  18. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates Inc (2017). https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

  19. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them (2014). http://arxiv.org/abs/1412.0035

  20. Miller, T.: Explanation in artificial intelligence: insights from the social sciences (2017). http://arxiv.org/abs/1706.07269

  21. Mittelstadt, B.D., Russell, C., Wachter, S.: Explaining explanations in AI (2018). http://arxiv.org/abs/1811.01439

  22. Molnar, C.: Interpretable machine learning (2019). https://christophm.github.io/interpretable-ml-book/

  23. Mu, J., Andreas, J.: Compositional explanations of neurons (2020). https://arxiv.org/abs/2006.14032

  24. Nguyen, A.M., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks (2016). http://arxiv.org/abs/1605.09304

  25. Rosenfeld, A.: Better metrics for evaluating explainable artificial intelligence. In: International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 45–50 (2021). 9781450383073

    Google Scholar 

  26. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Networks Learn. Syst. 28(11), 2660–2673 (2017). https://doi.org/10.1109/TNNLS.2016.2599820

    Article  MathSciNet  Google Scholar 

  27. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps (2014)

    Google Scholar 

  28. Slugoski, B.R., Lalljee, M., Lamb, R., Ginsburg, G.P.: Attribution in conversational context: effect of mutual knowledge on explanation-giving. Eur. J. Soc. Psychol. 23(3), 219–238 (1993)

    Article  Google Scholar 

  29. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR (2017). http://proceedings.mlr.press/v70/sundararajan17a.html

  30. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics (2016). http://arxiv.org/abs/1609.02612

  31. Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., Zhu, J.: Explainable AI: a brief survey on history, research areas, approaches and challenges. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) Natural Language Processing and Chinese Computing, pp. 563–574 (2019). Springer International Publishing, Cham. ISBN 978-3-030-32236-6

    Google Scholar 

  32. Yang, F., Du, M., Hu, X.: Evaluating explanation without ground truth in interpretable machine learning (2019) http://arxiv.org/abs/1907.06831

  33. Yeh, C., Hsieh, C., Suggala, A.S., Inouye, D.I., Ravikumar, P.: How sensitive are sensitivity-based explanations? (2019). http://arxiv.org/abs/1901.09392

  34. Yeom, S., Seegerer, P., Lapuschkin, S., Wiedemann, S., Müller, K., Samek, W.: Pruning by explaining: a novel criterion for deep neural network pruning (2019). http://arxiv.org/abs/1912.08881

  35. Ylikoski, P.: Causal and constitutive explanation compared. Erkenntnis 78(2), 277–297 (2013). https://doi.org/10.1007/s10670-013-9513-9

    Article  MathSciNet  Google Scholar 

  36. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks (2013). http://arxiv.org/abs/1311.2901

  37. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNS (2015)

    Google Scholar 

  38. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5122–5130 (2017). https://doi.org/10.1109/CVPR.2017.544

  39. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018). https://doi.org/10.1109/TPAMI.2017.2723009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biagio La Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makinwa, S.M., La Rosa, B., Capobianco, R. (2022). Detection Accuracy for Evaluating Compositional Explanations of Units. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds) AIxIA 2021 – Advances in Artificial Intelligence. AIxIA 2021. Lecture Notes in Computer Science(), vol 13196. Springer, Cham. https://doi.org/10.1007/978-3-031-08421-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08421-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08420-1

  • Online ISBN: 978-3-031-08421-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics