Skip to main content

On the Evaluation of the Plausibility and Faithfulness of Sentiment Analysis Explanations

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2022)

Abstract

With the pervasive use of Sentiment Analysis (SA) models in financial and social settings, performance is no longer the sole concern for reliable and accountable deployment. SA models are expected to explain their behavior and highlight textual evidence of their predictions. Recently, Explainable AI (ExAI) is enabling the “third AI wave” by providing explanations for the highly non-linear black-box deep AI models. Nonetheless, current ExAI methods, especially in the NLP field, are conducted on various datasets by employing different metrics to evaluate several aspects. The lack of a common evaluation framework is hindering the progress tracking of such methods and their wider adoption.

In this work, inspired by offline information retrieval, we propose different metrics and techniques to evaluate the explainability of SA models from two angles. First, we evaluate the strength of the extracted “rationales” in faithfully explaining the predicted outcome. Second, we measure the agreement between ExAI methods and human judgment on a homegrown dataset (Dataset and code available at https://gitlab.com/awadailab/exai-nlp-eval) to reflect on the rationales plausibility. Our conducted experiments comprise four dimensions: (1) the underlying architectures of SA models, (2) the approach followed by the ExAI method, (3) the reasoning difficulty, and (4) the homogeneity of the ground-truth rationales.

We empirically demonstrate that anchors explanations are more aligned with the human judgment and can be more confident in extracting supporting rationales. As can be foreseen, the reasoning complexity of sentiment is shown to thwart ExAI methods from extracting supporting evidence. Moreover, a remarkable discrepancy is discerned between the results of different explainability methods on the various architectures suggesting the need for consolidation to observe enhanced performance. Predominantly, transformers are shown to exhibit better explainability than convolutional and recurrent architectures. Our work paves the way towards designing more interpretable NLP models and enabling a common evaluation ground for their relative strengths and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Refers to the metric hereafter.

  2. 2.

    Instructions to labelers are provided in the supplementary material.

References

  1. Arras, L., Horn, F., Montavon, G., Müller, K., Samek, W.: What is relevant in a text document?: an interpretable machine learning approach. arXiv preprint arXiv:1612.07843 (2016)

  2. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS One 10(7), e0130140 (2015)

    Article  Google Scholar 

  3. Bodria, F., Panisson, A., Perotti, A., Piaggesi, S.: Explainability methods for natural language processing: applications to sentiment analysis (discussion paper) (2020)

    Google Scholar 

  4. Cer, D.E.A.: Universal sentence encoder for English. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 169–174. Association for Computational Linguistics, Brussels (2018)

    Google Scholar 

  5. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (2018)

    Google Scholar 

  6. Chen, H., Ji, Y.: Improving the explainability of neural sentiment classifiers via data augmentation. arXiv preprint arXiv:1909.04225 (2019)

  7. Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of the state of explainable AI for natural language processing (2020)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. DeYoung, J., et al.: Eraser: a benchmark to evaluate rationalized NLP models. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4443–4458 (2020)

    Google Scholar 

  10. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)

    Article  Google Scholar 

  11. Habimana, O., Li, Y., Li, R., Gu, X., Yu, G.: Sentiment analysis using deep learning approaches: an overview. Sci. China Inf. Sci. 63(1), 1–36 (2019). https://doi.org/10.1007/s11432-018-9941-6

    Article  Google Scholar 

  12. Hassan, A., Mahmood, A.: Deep learning approach for sentiment analysis of short texts. In: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), pp. 705–710. IEEE (2017)

    Google Scholar 

  13. Jacovi, A., Goldberg, Y.: Towards faithfully interpretable NLP systems: how should we define and evaluate faithfulness? In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4198–4205 (2020)

    Google Scholar 

  14. Jain, S., Wallace, B.C.: Attention is not explanation. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 3543–3556 (2019)

    Google Scholar 

  15. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  16. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: a lite bert for self-supervised learning of language representations (2020)

    Google Scholar 

  17. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach (2019)

    Google Scholar 

  18. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 4765–4774 (2017)

    Google Scholar 

  19. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, June 2011, pp. 142–150 (2011)

    Google Scholar 

  20. Mishra, P.: Explainability for Non-Linear Models, pp. 93–127. Apress, Berkeley (2022). https://doi.org/10.1007/978-1-4842-7158-2_4

  21. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1 (Long Papers), pp. 1101–1111 (2018)

    Google Scholar 

  22. Nguyen, A., Yosinski, J., Clune, J.: Understanding neural networks via feature visualization: a survey. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 55–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_4

  23. Onan, A.: Sentiment analysis on massive open online course evaluations: a text mining and deep learning approach. Comput. Appl. Eng. Educ. 29(3), 572–589 (2021)

    Article  Google Scholar 

  24. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the ACL (2005)

    Google Scholar 

  25. Patro, B.N., Lunayach, M., Patel, S., Namboodiri, V.P.: U-cam: visual explanation using uncertainty based class activation maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7444–7453 (2019)

    Google Scholar 

  26. Qin, Z., Yu, F., Liu, C., Chen, X.: How convolutional neural network see the world - a survey of convolutional neural network visualization methods (2018)

    Google Scholar 

  27. Radford, A., Jozefowicz, R., Sutskever, I.: Learning to generate reviews and discovering sentiment. arXiv preprint arXiv:1704.01444 (2017)

  28. Rambocas, M., Gama, J., et al.: Marketing Research: The Role of Sentiment Analysis. Universidade do Porto, Faculdade de Economia do Porto, Tech. Rep. (2013)

    Google Scholar 

  29. Rambocas, M., Pacheco, B.G.: Online sentiment analysis in marketing research: a review. J. Res. Interact. Market. (2018)

    Google Scholar 

  30. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier (2016)

    Google Scholar 

  31. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  32. Samek, W., Müller, K.-R.: Towards explainable artificial intelligence. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 5–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_1

  33. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of Bert: smaller, faster, cheaper and lighter (2020)

    Google Scholar 

  34. Serrano, S., Smith, N.A.: Is attention interpretable? In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2931–2951 (2019)

    Google Scholar 

  35. Shi, Y., Zhu, L., Li, W., Guo, K., Zheng, Y.: Survey on classic and latest textual sentiment analysis articles and techniques. Int. J. Inf. Technol. Decis. Making 18(04), 1243–1287 (2019)

    Article  Google Scholar 

  36. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences (2019)

    Google Scholar 

  37. De Sousa Silveira, T., Uszkoreit, H., Ai, R.: Using aspect-based analysis for explainable sentiment predictions. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp. 617–627. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32236-6_56

  38. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. arXiv preprint arXiv:1703.01365 (2017)

  39. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  40. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q.V.: Xlnet: generalized autoregressive pretraining for language understanding (2020)

    Google Scholar 

  41. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. arXiv preprint arXiv:1311.2901 (2013)

  42. Zini, J.E., Awad, M.: On the Explainability of Natural Language Processing Deep Models. ACM Computing Surveys (2022)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the University Research Board (URB) and the Maroun Semaan Faculty of Engineering and Architecture (MSFEA) at the American University of Beirut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariette Awad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Zini, J., Mansour, M., Mousi, B., Awad, M. (2022). On the Evaluation of the Plausibility and Faithfulness of Sentiment Analysis Explanations. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-031-08337-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08337-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08336-5

  • Online ISBN: 978-3-031-08337-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics