Skip to main content

Predictive Maintenance Based on Machine Learning Model

  • 913 Accesses

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 647)

Abstract

This paper addresses the problem of predictive maintenance in industry 4.0. Industry 4.0 revolutionized companies in the way they produce, manufacture, improve and distribute products. Industries are competing to implement and develop digital technologies driving Industry 4.0 which leads to increased automation (integration of advanced sensors, embedded software and robotics that collect and analyse data and allow for better decision making), predictive maintenance, self-optimization of process improvements and, above all, a new level of efficiencies and responsiveness to customers not previously possible. From this context the goal of the proposed work is to provide an industrial use case of machine smartifying to predict its Remaining Useful Life based on internal and external data collection and analysis using a Machine Learning algorithms. A digital Twin dashboard for real time monitoring of the machine and the result of the Machine Learning model prediction will be presented.

Keywords

  • Predictive maintenance
  • Digital technologies
  • Remaining useful life
  • Machine learning algorithms

Supported by the EU Commission for IoTwins project number 857191.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.tensorflow.org/.

  2. 2.

    https://www.kepware.com/en-us/products/kepserverex/.

  3. 3.

    https://www.ptc.com/en/products/iiot/thingworx-platform.

  4. 4.

    https://www.wago.com/us/discover-plcs.

  5. 5.

    https://www.pruftechnik.com/com/Products-and-Services/Condition-Monitoring-Systems/Online-Condition-Monitoring/Online-Condition-Monitoring-Systems/VIBGUARD-compact/.

References

  1. Cai, B., Liu, Y., Xie, M.: A dynamic-Bayesian-network-based fault diagnosis methodology considering transient and intermittent faults. IEEE Trans. Autom. Sci. Eng. 14(1), 276–285 (2017)

    CrossRef  Google Scholar 

  2. Cai, B., Liu, H., Xie, M.: A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks. Mech. Syst. Sig. Process. 80, 31–44 (2016)

    CrossRef  Google Scholar 

  3. Wang, Y., Liu, M., Bao, Z., Zhang, S.: Stacked sparse autoencoder with PCA and SVM for data-based line trip fault diagnosis in power systems. Neural Comput. Appl. 31(10), 6719–6731 (2019)

    CrossRef  Google Scholar 

  4. Shen, C., Qi, Y., Wang, J., Cai, G., Zhu, Z.: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder. Eng. Appl. Artif. Intell. 76, 170–184 (2018)

    CrossRef  Google Scholar 

  5. Siegel, J.E., Pratt, S., Sun, Y., Sarma, S.E.: Real-time Deep Neural Networks for internet-enabled arc-fault detection. Eng. Appl. Artif. Intell. 74, 35–42 (2018)

    CrossRef  Google Scholar 

  6. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems. Eng. Appl. Artif. Intell. 85, 634–644 (2019)

    CrossRef  Google Scholar 

  7. Borghesi, A., Bartolini, A., Lombardi, M., et al.: Anomaly detection using autoencoders in high performance computing systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 9428–9433 (2019)

    Google Scholar 

  8. Si, X.-S., Wang, W., Hu, C.-H., Zhou, D.-H.: Remaining useful life estimation – a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)

    CrossRef  MathSciNet  Google Scholar 

  9. Zhang, S., Zhang, S., Wang, B., Habetler, T.G.: Deep learning algorithms for bearing fault diagnostics—a comprehensive review. IEEE Access 8, 29857–29881 (2020)

    CrossRef  Google Scholar 

  10. Borghesi, A., et al.: IoTwins: design and implementation of a platform for the management of digital twins in industrial scenarios. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE (2021)

    Google Scholar 

  11. Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M.: Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. 63(11), 7067–7075 (2016)

    CrossRef  Google Scholar 

  12. Zhang, W., Peng, G., Li, C., Chen, Y., Zhang, Z.: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors 17(2), 425 (2017)

    CrossRef  Google Scholar 

  13. Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  14. van den Oord, A., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  15. Guo, L., Li, N., Jia, F., Lei, Y., Lin, J.: A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 240, 98–109 (2017)

    CrossRef  Google Scholar 

  16. Cao, Y., Ding, Y., Jia, M., Tian, R.: A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings. Reliab. Eng. Syst. Saf. 215, 107813 (2021)

    CrossRef  Google Scholar 

  17. Wang, Y., Deng, L., Zheng, L., Gao, R.X.: Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics. J. Manuf. Syst. 60, 512–526 (2021)

    CrossRef  Google Scholar 

  18. Spiegel, S., et al.: Pattern recognition and classification for multivariate time series. In: Proceedings of the 5th International Workshop on Knowledge Discovery from Sensor Data (2011)

    Google Scholar 

Download references

Acknowledgements

This project is funded by the EU Commission for IoTwins project number 857191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassem Hichri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hichri, B., Driate, A., Borghesi, A., Giovannini, F. (2022). Predictive Maintenance Based on Machine Learning Model. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-031-08337-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08337-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08336-5

  • Online ISBN: 978-3-031-08337-2

  • eBook Packages: Computer ScienceComputer Science (R0)