Skip to main content

Deep Recurrent Neural Networks for OYO Hotels Recommendation

  • 1015 Accesses

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 646)

Abstract

Recommendation Systems at OYO solve a complex personalization problem with scale and sophistication. The authors have focused on the development of the best-in-class recommendation system in the hospitality industry using a deep learning based model. The objective of the work is to develop a recommendation model which uses sequences of user interactions with contents derived from user interactions. The hybrid model described in the paper is a deep recurrent neural network based architecture split into two components: first, an embedding generation model and then a deep prediction and ranking model. The models have shown significant performance improvement both online and offline over existing collaborative filtering based models across geographies irrespective of traffic density and hotel supply density. The success of the deep learning based hybrid recommendation model at OYO across different geographies indicates immense potential of such recommender systems in industries such as travel, hospitality etc.

Keywords

  • Neural network
  • Deep learning
  • RNN
  • GRU
  • LSTM
  • BiLSTM
  • Graph-based model
  • CTR
  • Conversion
  • Realization
  • CxR
  • Embeddings
  • Hit Ratio
  • Mean reciprocal rank

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adomavicius, G., Tuzhilin, : Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Google Scholar 

  2. Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: Recsys, pp. 191–198 (2016)

    Google Scholar 

  3. Gomez-Uribe, C.A., Hunt, N.: The Netflix recommender system: algorithms, business value, and innovation. TMIS 6(4), 13 (2016)

    Google Scholar 

  4. James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi Sampath. 2010. The YouTube Video Recommendation System. In Recsys

    Google Scholar 

  5. Cheng, H.-T., et al.: Wide & deep learning for recommender systems. In: Recsys, pp. 7–10 (2016)

    Google Scholar 

  6. Okura, S., Tagami, Y., Ono, S., Tajima, A.: Embedding-based news recommendation for millions of users. In: SIGKDD (2017)

    Google Scholar 

  7. Xiaoyuan, S., Khoshgoaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)

    Google Scholar 

  8. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002)

    Google Scholar 

  9. Fernandez-Tobıas, I., Cantador, I., Kaminskas, M., Ricci, F.: Cross-domain recommender systems: a survey of the state of the art. In: Spanish Conference on Information Retrieval, 24 (2012)

    Google Scholar 

  10. Khan, M.M., Ibrahim, R., Ghani, I.: Cross domain recommender systems: a systematic literature review. ACM Comput. Surv. 50, 3 (2017)

    Google Scholar 

  11. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: An Introduction (2010)

    Google Scholar 

  12. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)

    Google Scholar 

  13. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 77–118. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_3

    CrossRef  Google Scholar 

  14. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Google Scholar 

  15. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Proceedings of NIPS, pp. 1257–1264. Curran Associates Inc., USA (2007)

    Google Scholar 

  16. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (Nov. 1997), 1735–1780

    Google Scholar 

  17. Cho, K., et al.: Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: Proceedings of EMNLP. Association for Computational Linguistics, pp. 1724–1734 (2014)

    Google Scholar 

  18. Donkers, B.L., Ziegler, J.: Sequential user-based recurrent neural network recommendations. In: Proceedings of RecSys, pp. 152–160. ACM, New York, NY, USA (2017)

    Google Scholar 

  19. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommendations. In: Proceedings of CIKM, pp. 843–852. ACM, New York, NY, USA (2018)

    Google Scholar 

  20. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. In: Proceedings of ICLR (2016)

    Google Scholar 

  21. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based recommendation. In: Proceedings of CIKM, pp. 1419–1428. ACM, New York, NY, USA (2017)

    Google Scholar 

  22. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations with hierarchical recurrent neural networks. In: Proceedings of RecSys, pp. 130–137. ACM, New York, NY, USA (2017)

    Google Scholar 

  23. Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A.J. Jing, H.: recurrent recommender networks. In: Proceedings of WSDM, pp. 495–503. ACM, New York, NY, USA (2017)

    Google Scholar 

  24. Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: A dynamic recurrent model for next basket recommendation. In: Proceedings of SIGIR, pp. 729–732. ACM, New York, NY, USA (2016)

    Google Scholar 

  25. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Google Scholar 

  26. Grbovic, C.: Real-time personalization using embeddings for search ranking at airbnb. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 311–320. KDD (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshul Rankawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rankawat, A., Kumar, R., Kumar, A. (2022). Deep Recurrent Neural Networks for OYO Hotels Recommendation. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-08333-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08333-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08332-7

  • Online ISBN: 978-3-031-08333-4

  • eBook Packages: Computer ScienceComputer Science (R0)