Skip to main content

Fiber Optic Technology for Environmental Monitoring: State of the Art and Application in the Observatory of Transfers in the Vadose Zone-(O-ZNS)

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Part of the book series: Springer Water ((SPWA))

  • 501 Accesses

Abstract

The structure and dynamics of the Vadose Zone (VZ) play a major role in the groundwater recharge process and in the transport of contaminants. By monitoring the mass and heat transfer processes within the VZ, it will be possible to predict the contaminants travel time and implement suitable solutions to preserve the groundwater resources. Several environmental monitoring solutions have been developed in recent years to better understand the complex hydrogeological processes that occur along the VZ. The use of Fiber Optic (FO) sensors is a promising technology for environmental monitoring. Compared to conventional sensors, the FO sensors allow measuring and monitoring different parameters, while offering interesting specificities. To improve our knowledge on the reactive processes occurring during mass and heat transfers within the VZ of the Beauce aquifer, the Observatory of transfers in the VZ is being developed near Orléans (France). Three types of distributed FO sensors (DTS, DSS and DAS) have been installed at the O-ZNS experimental site in July 2020. This chapter presents the state of the art on the use of FO sensors for environmental monitoring. The installation of these sensors at the O-ZNS site is then discussed along with the future developments and targeted results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nimmo JR (2005) Unsaturated zone flow processes. In: Anderson MG, Bear J (eds) Encyclopedia of hydrological sciences. Wiley, Chichester, pp 2299–2322

    Google Scholar 

  2. Arora B, Dwivedi D, Faybishenko B, Jana RB, Wainwright HM (2019) Understanding and predicting vadose zone processes. Rev Mineral Geochem 85(1):303–328

    Article  CAS  Google Scholar 

  3. Stephens DB (2018) Vadose zone hydrology. CRC Press

    Google Scholar 

  4. Philippe É, Habets F, Ledoux E, Goblet P, Viennot P, Mary B (2011) Improvement of the solute transfer in a conceptual unsaturated zone scheme: a case study of the Seine River basin. Hydrol Process 25(5):752–765

    Article  ADS  CAS  Google Scholar 

  5. Grattan KT, Meggitt BT (eds) (1995) Optical fiber sensor technology, vol 1. Chapman & Hall, London

    Google Scholar 

  6. Or D, Tuller M, Stothoff S (2006) Review of vadose zone measurement and monitoring tools for Yucca Mountain performance confirmation program. US Nuclear Regulatory Commission report under contract NRC-02-02-012

    Google Scholar 

  7. Jin G, Roy B (2017) Hydraulic-fracture geometry characterization using low-frequency DAS signal. Lead Edge 36(12):975–980. https://doi.org/10.1190/tle36120975.1

  8. Mellors RJ, Messerly M, Morris J, Ryerson R, Sherman C, Yu C, Allen G (2018) Modeling potential EGS signals from a distributed fiber optic sensor deployed in a borehole (No. LLNL-PROC-745469). Lawrence Livermore National Lab. (LLNL), Livermore, CA, United States

    Google Scholar 

  9. Read T, Bour O, Bense V, Le Borgne T, Goderniaux P, Klepikova MV et al (2013) Characterizing groundwater flow and heat transport in fractured rock using fiber‐optic distributed temperature sensing. Geophys Res Lett 40(10):2055–2059

    Google Scholar 

  10. Read T, Bour O, Selker JS, Bense VF, Le Borgne T, Hochreutener R, Lavenant N (2014) Active-distributed temperature sensing to continuously quantify vertical flow in boreholes. Water Resour Res 50(5):3706–3713

    Article  ADS  Google Scholar 

  11. Gambolati G, Teatini P (2015) Geomechanics of subsurface water withdrawal and injection. Water Resour Res 51:3922–3955

    Article  ADS  Google Scholar 

  12. Huang AB, Wang CC, Lee JT, Ho YT (2016) Applications of FBG-based sensors to ground stability monitoring. J Rock Mech Geotech Eng 2016(8):513–520

    Article  Google Scholar 

  13. Weiss JD (2003) U.S. patent no. 6,581,445. U.S. Patent and Trademark, Washington, DC

    Google Scholar 

  14. Sayde C, Gregory C, Gil-Rodriguez M, Tufillaro N, Tyler S, van de Giesen N, English M, Cuenca R, Selker JS (2010) Feasibility of soil moisture monitoring with heated fiber optics. Water Resour Res 46:W06201. https://doi.org/10.1029/2009WR007846

    Article  ADS  Google Scholar 

  15. Ciocca F, Lunati I, Van de Giesen N, Parlange MB (2012) Heated optical fiber for distributed soil-moisture measurements: a lysimeter experiment. Vadose Zone J

    Google Scholar 

  16. Michel K, Bureau B, Boussard-Plédel C, Jouan T, Adam JL, Staubmann K, Baumann T (2004) Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sens Actuators B Chem 101(1–2):252–259. https://doi.org/10.1016/j.snb.2004.03.014

    Article  CAS  Google Scholar 

  17. Michel K, Bureau B, Boussard-Pledel C, Adam J-L (2015) Réalisation d’un capteur à fibre optique infrarouge pour la détection des polluants dans les eaux usées. Déchets sciences et techniques [En ligne], N°34, mis à jour le: 04/03/2015. http://lodel.irevues.inist.fr/dechets-sciences-techniques/index.php?id=2102. https://doi.org/10.4267/dechets-sciences-techniques.2012

  18. Parker T, Shatalin S, Farhadiroushan M (2014) Distributed acoustic sensing—a new tool for seismic applications. First Break 32(2):61–69. https://doi.org/10.3997/1365-2397.2013034

    Article  Google Scholar 

  19. James SR, Knox HA, Preston L, Knox JM, Grubelich MC, King DK et al (2017) Fracture detection and imaging through relative seismic velocity changes using distributed acoustic sensing and ambient seismic noise. Lead Edge 36(12):1009–1017

    Google Scholar 

  20. Becker MW, Coleman TI, Ciervo CC (2020) Distributed acoustic sensing (DAS) as a distributed hydraulic sensor in fractured bedrock. Water Resour Res. e2020WR028140

    Google Scholar 

  21. Zhang C, Shi B, Gu K, Liu S, Wu J, Zhang S, Zhang L, Jiang H, Wei G (2018) Vertically distributed sensing of deformation using fiber optic sensing. Geophys Res Lett 45(21):11–732

    Article  Google Scholar 

  22. Murdoch LC, Germanovich LN, DeWolf SJ, Moysey SMJ, Hanna AC, Kim S, Duncan RG (2020) Feasibility of using in situ deformation to monitor CO2 storage. Int J Greenhouse Gas Control 93:102853. https://doi.org/10.1016/j.ijggc.2019.102853

  23. Zhang Y, Xue Z (2019) Deformation-based monitoring of water migration in rocks using distributed fiber optic strain sensing: a laboratory study. Water Resour Res 55(11):8368–8383

    Article  ADS  Google Scholar 

  24. Lei X, Xue Z, Hashimoto T (2019) Fiber optic sensing for geomechanical monitoring:(2)-distributed strain measurements at a pumping test and geomechanical modeling of deformation of reservoir rocks. Appl Sci 9(3):417

    Article  CAS  Google Scholar 

  25. Liu SP, Shi B, Gu K, Zhang CC, Yang JL, Zhang S, Yang P (2020) Land subsidence monitoring in sinking coastal areas using distributed fiber optic sensing: a case study. Nat Hazards 103(3):3043–3061

    Article  Google Scholar 

  26. Lu P, Lalam N, Badar M, Liu B, Chorpening BT, Buric MP, Ohodnicki PR (2019) Distributed optical fiber sensing: review and perspective. Appl Phys Rev 6(4):041302

    Article  Google Scholar 

  27. Zhicheng Z, Liu K, Han X, Lin J (2019) Review of fiber-optic distributed acoustic sensing technology. Instrumentation 6(4)

    Google Scholar 

  28. Wen H, Peng Z, Jian J, Wang M, Liu H, Mao ZH et al (2018) Artificial intelligent pattern recognition for optical fiber distributed acoustic sensing systems based on phase-OTDR. In: 2018 Asia communications and photonics conference (ACP). IEEE, pp 1–4

    Google Scholar 

  29. Wang X, Lee J, Thigpen B, Vachon GP, Poland SH, Norton D (2008) Modeling flow profile using distributed temperature sensor (DTS) system. In: Intelligent energy conference and exhibition. Society of Petroleum Engineers

    Google Scholar 

  30. Sherman C, Mellors R, Morris J, Ryerson F (2019) Geomechanical modeling of distributed fiber-optic sensor measurements. Interpretation 7(1):SA21–SA27

    Google Scholar 

  31. Janting J, Pedersen JK, Woyessa G, Nielsen K, Bang O (2019) Small and robust all-polymer fiber Bragg grating based pH sensor. J Lightwave Technol 37(18):4480–4486

    Article  ADS  CAS  Google Scholar 

  32. Kishore PVN, Madhuvarasu SS, Putha K, Moru S, Gobi KV (2016) Hydrogel coated fiber Bragg grating based chromium sensor. In: Optical sensing and detection IV, vol 9899. International Society for Optics and Photonics, p 98991B

    Google Scholar 

  33. Guzman-Sepulveda JR, Ruiz-Perez VI, Torres-Cisneros M, Sanchez-Mondragon JJ, May-Arrioja DA (2013) Fiber optic sensor for high-sensitivity salinity measurement. IEEE Photonics Technol Lett 25(23):2323–2326

    Article  ADS  Google Scholar 

  34. Yeo TL, Sun T, Grattan KT, Parry D, Lade R, Powell BD (2005) Polymer-coated fiber Bragg grating for relative humidity sensing. IEEE Sens J 5(5):1082–1089

    Article  ADS  CAS  Google Scholar 

  35. Elsherif M, Moreddu R, Hassan MU, Yetisen AK, Butt H (2019) Real-time optical fiber sensors based on light diffusing microlens arrays. Lab Chip 19(12):2060–2070

    Article  CAS  PubMed  Google Scholar 

  36. Delepine-Lesoille S, Bertrand J, Lablonde L, Phéron X (2012) Distributed hydrogen sensing with Brillouin scattering in optical fibers. Photonics Technol Lett 24(17)

    Google Scholar 

  37. Starecki F, Charpentier F, Doualan JL, Quetel L, Michel K, Chahal R et al (2015) Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers. Sens Actuators B Chem 207:518–525

    Article  CAS  Google Scholar 

  38. Starecki F, Braud A, Doualan J-L, Ari J, Boussard-Plédel C, Michel K, Nazabal V, Camy P (2019) All-optical carbon dioxide remote sensing using rare earth doped chalcogenide fibers. Opt Lasers Eng 122:328–334. https://doi.org/10.1016/j.optlaseng.2019.06.018

    Article  Google Scholar 

  39. Barrias A, Casas JR, Villalba S (2016) A review of distributed optical fiber sensors for civil engineering applications. Sensors 16(5):748

    Article  ADS  PubMed Central  Google Scholar 

  40. Hartog A (2017) An introduction to distributed optical fibre sensors. CRC Press, 442pp

    Google Scholar 

  41. Schenato L (2017) A review of distributed fibre optic sensors for geo-hydrological applications. Appl Sci 7(9):896. https://doi.org/10.3390/app7090896

    Article  CAS  Google Scholar 

  42. Di Sante R (2015) Fibre optic sensors for structural health monitoring of aircraft composite structures. Recent advances and applications. Sensors 15(8):18666–8713

    Google Scholar 

  43. Annamdas KKK, Annamdas VGM (2010) Review on developments in fiber optical sensors and applications. In: Fiber optic sensors and applications VII, vol 7677. International Society for Optics and Photonics, p 76770R

    Google Scholar 

  44. Mihailov SJ (2012) Fiber Bragg grating sensors for harsh environments. Sensors 12(2):1898–1918

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miah K, Potter DK (2017) A review of hybrid fiber-optic distributed simultaneous vibration and temperature sensing technology and its geophysical applications. Sensors 17(11):2511

    Article  ADS  PubMed Central  Google Scholar 

  46. Bao Y, Huang Y, Hoehler MS, Chen G (2019) Review of fiber optic sensors for structural fire engineering. Sensors 19(4):877

    Article  ADS  PubMed Central  Google Scholar 

  47. Ferraro P, de Natale G (2002) On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring. Opt Laser Eng 37:115–130

    Article  Google Scholar 

  48. Lecoy P (2016) Les fibres optiques en capteurs et en instrumentation. La Revue 3 E. I 85

    Google Scholar 

  49. Hill K, Meltz G (1997) Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol 15(8):1263–1276

    Google Scholar 

  50. Kashyap R (2009) Fiber Bragg gratings. Academic Press, Cambridge

    Google Scholar 

  51. Drusová S, Wagterveld RM, Wexler AD, Offerhaus HL (2019) Dynamic consolidation measurements in a well field using fiber Bragg grating sensors. Sensors 19(20):4403

    Article  ADS  PubMed Central  Google Scholar 

  52. Alemohammad H, Azhari A, Liang R (2017) Fiber optic sensors for distributed monitoring of soil and groundwater during in-situ thermal remediation. In: Fiber optic sensors and applications XIV, vol 10208. International Society for Optics and Photonics, p 102080I

    Google Scholar 

  53. Wang J, Jiang L, Sun Z, Hu B, Zhang F, Song G, et al (2017) Research on the surface subsidence monitoring technology based on fiber Bragg grating sensing. Photonic Sens 7(1):20–26

    Google Scholar 

  54. Cong J, Zhang X, Chen K, Xu J (2002) Fiber optic Bragg grating sensor based on hydrogels for measuring salinity. Sens Actuators B Chem 87(3):487–490

    Article  CAS  Google Scholar 

  55. Aleixandrea M, Correderab P, Hernanzb ML, Sayago I, Horrillo MC, Gutierrez-Monreal J (2007) Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations. In: Proceedings of the 2007 Spanish conference on electron devices, 31 Jan–2 Feb 2007, Madrid, Spain, pp 223–225

    Google Scholar 

  56. Selker JS et al (2006) Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour Res 42

    Google Scholar 

  57. Tyler SW, Selker JS, Hausner MB (2009) Environmental temperature sensing using Raman spectra DTS fiber‐optic methods. Water Resour Res 45(4)

    Google Scholar 

  58. Baldwin CS (2014) Brief history of fiber optic sensing in the oil field industry. In: Fiber optic sensors and applications XI, vol 9098. International Society for Optics and Photonics, p 909803

    Google Scholar 

  59. Koudelka P, Petrujova B, Latal J, Hanacek F, Siska P, Skapa J, Vasinek V (2010) Optical fiber distributed sensing system applied in cement concrete commixture research. Radio Eng 19(1):172–177

    Google Scholar 

  60. Brown G (2008) Downhole temperatures from optical fiber. Oilfield Rev 20(4):34–39

    Google Scholar 

  61. Molenaar MM, Hill D, Webster P, Fidan E, Birch B (2012) First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics. SPE Drill Completion 27(01):32–38. https://doi.org/10.2118/140561-PA

    Article  Google Scholar 

  62. Daley TM, Freifeld BM, Ajo-Franklin J, Dou S, Pevzner R, Shulakova V, Kashikar S, Miller DE, Goetz J, Henninges J, Lueth S (2013) Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Lead Edge 32(6):699–706. https://doi.org/10.1190/tle32060699.1

    Article  Google Scholar 

  63. Kasahara J, Hasada Y, Kuzume H, Fujise Y, Yamaguchi T (2019) Seismic feasibility study to identify supercritical geothermal reservoirs in a geothermal borehole using DTS and DAS. In: 81st EAGE conference and exhibition 2019, vol 2019, no 1. European Association of Geoscientists & Engineers, pp 1–5

    Google Scholar 

  64. Ringstad C, Røed MH, Jestin C, Calbris G, Eliasson P, Jordan M, Wüstefeld A (2020) A multi-fibre optic sensing system for cross-well monitoring at the Svelvik CO2 field lab. In: First EAGE workshop on fibre optic sensing, vol 2020, no 1. European Association of Geoscientists & Engineers, pp 1–5

    Google Scholar 

  65. Selker J, Van de Giesen N, Westhoff M, Luxemburg W, Parlange MB (2006) Fiber optics opens window on stream dynamics. Geophys Res Lett 33(24):24401. https://doi.org/10.1029/2006GL027979

  66. Westhoff MC, Savenije HHG, Luxemburg WJ, Stelling GS, Van de Giesen NC, Selker JS et al (2007) A distributed stream temperature model using high resolution temperature observations. Hydrol Earth Syst Sci 11(4):1469–1480

    Google Scholar 

  67. Keller CA, Huwald H, Vollmer MK, Wenger A, Hill M, Parlange MB, Reimann S (2011) Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height. Atmos Meas Tech 143–149

    Google Scholar 

  68. Freifeld BM, Finsterle S, Onstott TC, Toole P, Pratt LM (2008) Ground surface temperature reconstructions: using in-situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor. Geophys Res Lett 35:L14309. https://doi.org/10.1029/2008GL034762

  69. Siska P, Latal J, Bujok P, Vanderka A, Klempa M, Koudelka P et al (2016) Optical fiber based distributed temperature systems deployment for measurement of boreholes temperature profiles in the rock massif. Opt Quant Electron 48(2):108

    Google Scholar 

  70. Hurtig E, Großwig S, Jobmann M, Kühn K, Marschall P (1994) Fibre-optic temperature measurements in shallow boreholes: experimental application for fluid logging. Geothermics 23(4):355–364

    Article  Google Scholar 

  71. Majorowicz JA, Smith SL (1999) Review of the ground temperatures in the Mallik field area: a constraint to the methane hydrate stability. Bull Geol Surv Can 544:45–56. ISSN 0068-7626

    Google Scholar 

  72. Roshan H, Young M, Andersen M, Acworth R (2014) Limitations of fibre optic distributed temperature sensing for quantifying surface water groundwater interactions. Hydrol Earth Syst Sci Discuss 11(7):8167–8190. https://doi.org/10.5194/hessd-118167-2014

    Article  ADS  Google Scholar 

  73. Hausner MB, Suárez F, Glander KE, Giesen NVD, Selker JS, Tyler SW (2011) Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data. Sensors 11(11):10859–10879. https://doi.org/10.3390/s111110859

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Van De Giesen N, Steele-Dunne SC, Jansen J, Hoes O, Hausner MB, Tyler S, Selker J (2012) Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data. Sensors 12(5):5471–5485. https://doi.org/10.3390/s120505471

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  75. Gamage DNV, Biswas A, Strachan IB, Adamchuk VI (2018) Soil water measurement using actively heated fiber optics at field scale. Sensors 18:1116. https://doi.org/10.3390/s18041116

    Article  ADS  CAS  Google Scholar 

  76. Zubelzu S, Rodriguez-Sinobas L, Saa-Requejo A, Benitez J, Tarquis AM (2019) Assessing soil water content variability through active heat distributed fiber optic temperature sensing. Agric Water Manag 212:193–202

    Google Scholar 

  77. Benítez-Buelga J, Rodríguez-Sinobas L, Sánchez Calvo R, Gil-Rodríguez M, Sayde C, Selker JS (2016) Calibration of soil moisture sensing with subsurface heated fiber optics using numerical simulation. Water Resour Res 52(4):2985–2995

    Article  ADS  Google Scholar 

  78. Liu G, Knobbe S, Butler J (2013) Resolving centimeter-scale flows in aquifers and their hydrostratigraphic controls. Geophys Res Lett 40:1098–1103. https://doi.org/10.1002/grl.50282

    Article  ADS  Google Scholar 

  79. Folch A, del Val L, Luquot L, Martínez-Pérez L, Bellmunt F, Le Lay H et al (2020) Combining fiber optic DTS, cross-hole ERT and time-lapse induction logging to characterize and monitor a coastal aquifer. J Hydrol 588:125050

    Google Scholar 

  80. Maldaner CH, Munn JD, Coleman TI, Molson JW, Parker BL (2019) Groundwater flow quantification in fractured rock boreholes using active distributed temperature sensing under natural gradient conditions. Water Resour Res 55(4):3285–3306

    Article  ADS  Google Scholar 

  81. Sebok CH, Munn JD, Coleman TI, Molson JW, Parker BL (2019) Groundwater flow quantification in fractured rock boreholes using active distributed temperature sensing under natural gradient conditions. Water Resour Res 55(4):3285–3306

    Article  ADS  Google Scholar 

  82. Mateeva A, Lopez J, Potters H, Andrey J, Cox B, Kiyashchenko D et al (2014) Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophys Prospect 62(Vertical seismic profiling and microseismicity frontiers):679–692

    Google Scholar 

  83. Dean T, Cuny T, Hartog A (2017) The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing. Geophys Prospect 65:184–193

    Google Scholar 

  84. Kasahara J, Hasada Y, Kuzume H, Fujise Y, Mikada H, Yamamoto K (2020) Seismic feasibility study to identify and characterize supercritical geothermal reservoirs using DTS, DAS, and surface seismic array. In: Proceedings World geothermal congress

    Google Scholar 

  85. Bakulin A, Hemyari E, Silvestrov I (2019) Acquisition trial of DrillCAM: real-time seismic with wireless geophones, instrumented top drive and near-bit accelerometer. In: SEG Technical program expanded abstracts 2019. Society of Exploration Geophysicists, pp 157–161

    Google Scholar 

  86. Harris K, White D, Melanson D, Samson C, Daley TM (2016) Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system. Int J Greenhouse Gas Control 50:248–260

    Article  CAS  Google Scholar 

  87. Kruiver P, Obando-Hernández E, Pefkos M, Karaoulis M, Bakx W, Doornenbal P et al (2020) Fibre optic monitoring of groundwater flow in a drinking water extraction well field. In: First EAGE workshop on fibre optic sensing, vol 2020, no 1. European Association of Geoscientists & Engineers, pp 1–5

    Google Scholar 

  88. Ajo-Franklin JB, Dou S, Lindsey NJ, Monga I, Tracy C, Robertson M et al (2019) Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci Rep 9(1):1–14

    Google Scholar 

  89. Dou S, Lindsey N, Wagner AM, Daley TM, Freifeld B, Robertson M, Peterson J, Ulrich C, Martin ER, Ajo-Franklin JB (2017) Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study. Sci Rep 7(1):1–12

    Google Scholar 

  90. Willis ME, Barfoot D, Ellmauthaler A, Wu X, Barrios O, Erdemir C et al (2016) Quantitative quality of distributed acoustic sensing vertical seismic profile data. Lead Edge 35(7):605–609

    Google Scholar 

  91. Shi B, Zhang D, Zhu H‐H (2019) Distributed fiber optic sensing for geoengineering monitoring, 1st edn. Science Press, Beijing (in Chinese)

    Google Scholar 

  92. Murdoch LC, Freeman CE, Germanovich LN, Thrash C, DeWolf S (2015) Using in situ vertical displacements to characterize changes in moisture load. Water Resour Res 51(8):5998–6016

    Article  ADS  Google Scholar 

  93. Zhang Y, Lei X, Hashimoto T, Xue Z (2020) In situ hydromechanical responses during well drilling recorded by fiber-optic distributed strain sensing. Solid Earth 11(6):2487–2497

    Article  ADS  CAS  Google Scholar 

  94. Houizot P, Anne ML, Boussard-Pledel C, Loreal O, Tariel H, Lucas J (2014) Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing. Sensors 14:17905–17914

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sanghera JS, Kung FH, Busse LE, Pureza PC, Aggarwal ID (1995) Infrared evanescent absorption-spectroscopy of toxic-chemicals using chalcogenide class fibers. J Am Ceram Soc 78:2198–2202

    Article  CAS  Google Scholar 

  96. Le Coq D, Michel K, Keirsse J, Boussard-Pledel C, Fonteneaua G, Bureau B (2002) Infrared glass fibers for in-situ sensing, chemical and biochemical reactions. C R Chim 5:907–913

    Google Scholar 

  97. Anne ML, La Salle ELG, Bureau B, Tristant J, Brochot F, Boussard-Pledel C (2009) Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy. Sens Actuators B Chem 137:687–691

    Google Scholar 

  98. Brandily ML, Monbet V, Bureau B, Boussard-Pledel C, Loreal O, Adam JL (2011) Identification of foodborne pathogens within food matrices by IR spectroscopy. Sens Actuators B Chem 160:202–206

    Article  CAS  Google Scholar 

  99. Jiang X, Jha A (2015) Engineering of a Ge-Te-Se glass fibre evanescent wave spectroscopic (FEWS) mid-IR chemical sensor for the analysis of food and pharmaceutical products. Sens Actuators B Chem 206:159–169

    Article  CAS  Google Scholar 

  100. Anne ML, Le Lan C, Monbet V, Boussard-Pledel C, Ropert M, Sire O (2009) Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans. J Biomed Opt 14

    Google Scholar 

  101. Chahal R, Starecki F, Boussard-Plédel C, Doualan JL, Michel K, Brilland L et al (2016) Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers. Sens Actuators B Chem 229:209–216. https://doi.org/10.1016/j.snb.2016.01.091

  102. de Frutos Cachorro J, Erdlenbruch K, Tidball M (2017) A dynamic model of irrigation and land-use choice: application to the Beauce aquifer in France. Eur Rev Agric Econ 44(1):99–120. https://doi.org/10.1093/erae/jbw005

  103. Le Coz D (2000) Gestion durable d’une ressource en eaux souterraines Cas de la nappe de Beauce. La Houille Blanche 7–8:116–121. https://doi.org/10.1051/lhb/2000085

    Article  Google Scholar 

  104. Ménillet F, Edwards N (200) The Oligocene–Miocene Calcaires de Beauce (Beauce limestones), Paris Basin, France. https://doi.org/10.1306/St46706C38

  105. Flipo N, Monteil C, Poulin M, de Fouquet C, Krimissa M (2012) Hybrid fitting of a hydrosystem model: long-term insight into the Beauce aquifer functioning (France). Water Resour Res 48(5):W05509. https://doi.org/10.1029/2011WR011092

    Article  ADS  Google Scholar 

  106. Graveline N (2020) Combining flexible regulatory and economic instruments for agriculture water demand control under climate change in Beauce. Water Resour Econ 29:100143. https://doi.org/10.1016/j.wre.2019.100143

  107. Lejars C, Fusillier JL, Bouarfa S, Coutant C, Brunel L (2012) Limitation of agricultural groundwater uses in Beauce (France): what are the impacts on farms and on the food-processing sector? Irrig Drain 61:54–64. https://doi.org/10.1002/ird.1659

    Article  Google Scholar 

  108. Légifrance (1992) LOI n° 92-3 du 3 janvier 1992 sur l’eau (1)

    Google Scholar 

  109. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy

    Google Scholar 

  110. European Commission (1991) Council directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC)

    Google Scholar 

  111. European Commission (2009) Directive 2009/128/EC of the European Parliament and of the council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides

    Google Scholar 

  112. Vereecken H, Schnepf A, Hopmans JW, Javaux M, Or D (2016) Modeling Soil processes: review, key challenges, and new perspectives. Vadose Zone J 15(5). https://doi.org/10.2136/vzj2015.09.0131

  113. Aldana C, Isch A, Bruand A, Azaroual M, Coquet Y (2021) Relationship between hydraulic properties and material features in a heterogeneous vadose zone of a vulnerable limestone aquifer. Vadose Zone J 20(4):e20127. https://doi.org/10.1002/vzj2.20127

  114. Isch A, Aldana C, Coquet Y, Azaroual M (2020) Material characteristics, hydraulic properties, and water travel time through the heterogeneous vadose zone of a Cenozoic limestone aquifer (Beauce, France). EGU 2020. https://doi.org/10.5194/egusphere-egu2020-5862

  115. IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015. In: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

    Google Scholar 

  116. Vereecken H, Huisman JA, Bogena H, Vanderborght J, Vrugt JA (2008) On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour Res 44(4):W00D06. https://doi.org/10.1029/2008WR006829

  117. Whalley WR, Ober ES, Jenkins M (2013) Measurement of the matric potential of soil water in the rhizosphere. J Exp Bot 64(13):3951–3963. https://doi.org/10.1093/jxb/ert044

  118. Lekshmi SUS, Singh DN, Baghini MS (2014) A critical review of soil moisture measurement. Measurement 54:92–105. https://doi.org/10.1016/j.measurement.2014.04.007

    Article  ADS  Google Scholar 

  119. Nolz R (2016) A review on the quantification of soil water balance components as a basis for agricultural water management with a focus on weighing lysimeters and soil water sensors. J Land Manag Food Environ 67(3). https://doi.org/10.1515/boku-2016-0012

  120. Singh G, Kaur G, Williard K, Schoonover J, Kang J (2018) Monitoring of water and solute transport in the vadose zone: a review. Vadose Zone J 17(1):23. https://doi.org/10.2136/vzj2016.07.0058

    Article  CAS  Google Scholar 

  121. Šimůnek J, van Genuchten MTh, Šejna M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J 15(7):25. https://doi.org/10.2136/vzj2016.04.0033

  122. Isch A, Coquet Y, Aldana C, Bruand A, Azaroual M (2021) Simulation of water flow and estimation of travel time through the heterogeneous vadose zone of a vulnerable limestone aquifer based on laboratory hydraulic properties measurements. Manuscript submitted for publication in J Hydrol (under review)

    Google Scholar 

  123. Wellings SR, Bell JP (1980) Movement of water and nitrate in the unsaturated zone of Upper Chalk near Winchester, Hants., England. J Hydrol 48(1):119–136. https://doi.org/10.1016/0022-1694(80)90070-0

    Article  Google Scholar 

  124. McLing TL, Brandon W, Zavata B, Smith RW, Smith C (2017) The application of radon for mapping open fracture networks in a thin vadose zone. Vadose Zone J 16(7). https://doi.org/10.2136/vzj2016.11.0116

  125. Isch A, Azaroual M (2019) Fluids transfers and hydrodynamics of the Vadose Zone of the O-ZNS platform site. In: Knowledge’s frontiers in water unsaturated hydrogeosystems: interface dynamics, heterogeneities & couplings, Orléans

    Google Scholar 

  126. Abbar B, Isch A, Azaroual MM (2020) Fiber optic and hydrogeological sensors for the monitoring of mass and heat transfers through the vadose zone of a Cenozoic limestone aquifer (Beauce, Orléans, France). In: AGU Fall meeting

    Google Scholar 

  127. Abbar B, Jodry C, Isch A, Laurent G, Azaroual M (2020) Monitoring of the mass and heat transfers through a heterogeneous karstic limestone vadose zone of an agricultural field (Beauce aquifer, Orleans, France), EGU 2020-5294. Virtual, 3–8 May 2020. https://doi.org/10.5194/egusphere-egu2020-5294

  128. Pütz T, Fank J, Flury M (2018) Lysimeters in vadose zone research. Vadose Zone J 17(1):180035. https://doi.org/10.2136/vzj2018.02.0035

    Article  CAS  Google Scholar 

  129. Isch A, Montenach D, Hammel F, Ackerer P, Coquet Y (2019) A comparative study of water and bromide transport in a bare loam soil using lysimeters and field plots. Water 11(6):1199. https://doi.org/10.3390/w11061199

  130. Weihermüller L, Siemens J, Deurer M, Knoblauch S, Rupp H (2007) In situ soil water extraction: a review. J Environ Qual 36(6):1735–1748. https://doi.org/10.2134/jeq2007.0218

    Article  CAS  PubMed  Google Scholar 

  131. Dahan O, Talby R, Yechieli Y, Adar E, Lazarovitch N (2009) In situ monitoring of water percolation and solute transport using a vadose zone monitoring system. Vadose Zone J 8(4):916. https://doi.org/10.2136/vzj2008.0134

    Article  Google Scholar 

  132. Quinn P, Parker BL, Cherry JA (2015) Blended head analyses to reduce uncertainty in packer testing in fractured-rock boreholes. Hydrogeol J 24(1):59–77. https://doi.org/10.1007/s10040-015-1326-2

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research work was conducted within the framework of the O-ZNS project which is part of PIVOTS project. We gratefully acknowledge the financial support provided by the Région Centre-Val de Loire (ARD 2020 program and CPER 2015–2020) and the French Ministry of Higher Education and Research (CPER 2015–2020 and public service to BRGM). This operation is also co-funded by European Union with the European Regional Development Fund. This research work is co-funded by the Labex VOLTAIRE (ANR-10-LABX-100-01).

Authors are also thankful for the help of Dominique Goncalves, Nicolas Bensaou, Quentin Pochez, and Emile Klotz (CEMENTYS engineers), Farid Laachir (ISTO), Clara Jodry (EOST), Anthony Bonjour (ATTIS Environment), Luigi Ardito and Olivier Serrano (BRGM) during the drilling of the boreholes and the installation of the fiber optic sensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Abbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbar, B. et al. (2022). Fiber Optic Technology for Environmental Monitoring: State of the Art and Application in the Observatory of Transfers in the Vadose Zone-(O-ZNS). In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_9

Download citation

Publish with us

Policies and ethics