Skip to main content

Optical Spectroscopy for on Line Water Monitoring

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Part of the book series: Springer Water ((SPWA))

  • 517 Accesses

Abstract

The occurrence of different contaminants in drinking water, surface water, domestic wastewater, and other water sources has led to increased interest in developing new methods and instruments for water quality monitoring able to provide adequate and rapid management interventions. A critical analysis of the main optical spectroscopy techniques for online water monitoring and their recent progress are presented. Not all spectroscopic techniques have yet reached a degree of maturity adequate for the purpose, however, even in these cases, their potentialities in this field are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas O, Burgess C (eds) (2017) UV-visible spectrophotometry of water and wastewater, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  2. van den Broeke J, Langergraber G, Weingartner A (2006) On-line and in-situ UV/vis spectroscopy for multi-parameter measurements: a brief review. Spectrosc Eur 18(4):15–18

    Google Scholar 

  3. Singh P, Singh MK, Beg YR, Nishad GR (2019) A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples. Talanta 191:364–381

    Article  CAS  PubMed  Google Scholar 

  4. Dobbs RA, Wise RH, Dean RB (1972) The use of ultra-violet absorbance for monitoring the total organic carbon content of water and wastewater. Water Res 6(10):1173–1180

    Article  CAS  Google Scholar 

  5. Mrkva M (1975) Automatic U.V. control system for relative evaluation of organic water pollution. Water Res 9 (5-6):587–589

    Google Scholar 

  6. Brookman SKE (1997) Estimation of biochemical oxygen demand in slurry and effluents using ultra-violet spectrophotometry. Water Res 31(2):372–374

    Article  CAS  Google Scholar 

  7. Shi Z, Chow CWK, Fabris R et al (2021) Evaluation of the impact of suspended particles on the UV absorbance at 254 nm (UV254) measurements using a submersible UV-Vis spectrophotometer. Environ Sci Pollut Res 28:12576–12586

    Article  CAS  Google Scholar 

  8. Langergraber G, Fleischmann N, Hofstaedter F (2003) A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater. Water Sci Technol 47(2):63–71

    Article  CAS  PubMed  Google Scholar 

  9. Thomas O, Théraulaz F, Cerdà V, Constant D et al (1996) Wastewater quality monitoring. Trends Anal Chem 16:419–424

    Article  Google Scholar 

  10. Pacheco Fernández M, Knutz T, Barjenbruch M (2020) Multi-parameter calibration of a UV/vis spectrometer for online monitoring of sewer systems. Water Sci Technol 82(5):927–939

    Article  PubMed  Google Scholar 

  11. Avagyan A, Runkle BRK, Kutzbach L (2014) Application of high-resolution spectral absorbance measurements to determine dissolved organic carbon concentration in remote areas. J Hydrol 517:435–446

    Article  CAS  Google Scholar 

  12. Charef A, Ghauch A, Baussand P, Martin-Bouyer M (2000) Water quality monitoring using a smart sensing system. Measurement 28(3):219–224

    Article  ADS  Google Scholar 

  13. Jeong HS, Lee SH, Shin HS (2007) Feasibility of on-line measurement of sewage components using the UV absorbance and the neural network. Environ Monit Assess 133:15–24

    Article  CAS  PubMed  Google Scholar 

  14. Lepot M, Torres A, Hofer T et al (2016) Calibration of UV/vis spectrophotometers: a review and comparison of different methods to estimate TSS and total and dissolved COD concentrations in sewers, WWTPs and rivers. Water Res 101:519–534

    Article  CAS  PubMed  Google Scholar 

  15. Qin X, Gao F, Chen G (2012) Wastewater quality monitoring system using sensor fusion and machine learning techniques. Water Res 46:1133–1144

    Article  CAS  PubMed  Google Scholar 

  16. Chen B, Wu H, Li SFY (2014) Development of variable pathlength UV–vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring. Talanta 120:325–330

    Article  CAS  PubMed  Google Scholar 

  17. Causse J, Thomas O, Jung AV, Thomas MF (2017) Direct DOC and nitrate determination in water using dual pathlength and second derivative UV spectrophotometry. Water Res 108:312–319

    Article  CAS  PubMed  Google Scholar 

  18. Mizaikoff B (2003) Infrared optical sensors for water quality monitoring. Water Sci Technol 47(2):35–42

    Article  CAS  PubMed  Google Scholar 

  19. Gowen AA, Tsenkova R, Bruen M, O’Donnell C (2012) Vibrational spectroscopy for analysis of water for human use and in aquatic ecosystems. Crit Rev Environ Sci Technol 42(23):2546–2573

    Article  Google Scholar 

  20. Quintelas C, Melo A, Costa M et al (2020) Environmentally-friendly technology for rapid identification and quantification of emerging pollutants from wastewater using infrared spectroscopy. Environ Toxicol Pharmacol 80:103458

    Article  CAS  PubMed  Google Scholar 

  21. Pasquini C (2018) Near infrared spectroscopy: a mature analytical technique with new perspectives—a review. Anal Chim Acta 1026:8–36

    Article  CAS  PubMed  Google Scholar 

  22. Dahlbacka J, Nyström J, Mossing T et al (2014) On-line measurement of the chemical oxygen demand in wastewater in a pulp and paper mill using near infrared spectroscopy. Spectr Anal Rev 2:19–25

    Article  CAS  Google Scholar 

  23. Pascoa RNM, Lopes JA, Lima JLFC (2008) In situ near infrared monitoring of activated dairy sludge wastewater treatment processes. J Near Infrared Spectrosc 16:409–419

    Article  ADS  CAS  Google Scholar 

  24. Melendez-Pastor I, Almendro-Candel MB, Navarro-Pedreño J et al (2013) Monitoring urban wastewaters’ characteristics by visible and short wave near-infrared spectroscopy. Water 5(4):2026–2036

    Article  CAS  Google Scholar 

  25. Tsenkova R (2009) Aquaphotomics: dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J Near Infrared Spectrosc 17:303–313

    Article  ADS  CAS  Google Scholar 

  26. Gowen A, Tsuchisaka Y, O’Donnell C, Tsenkova R (2011) Investigation of the potential of near infrared spectroscopy for the detection and quantification of pesticides in aqueous solution. Am J Anal Chem 2(8):53–62

    Google Scholar 

  27. Muncan J, Matovic V, Nikolic S et al (2020) Aquaphotomics approach for monitoring different steps of purification process in water treatment systems. Talanta 206:120253

    Article  CAS  PubMed  Google Scholar 

  28. Steyer P, Bouvier JC, Conte T et al (2002) On-line measurements of COD, TOC, VFA, total and partial alkalinity in anaerobic digestion processes using infra-red ectrometry. Water Sci Technol 45(10):133–138

    Article  CAS  PubMed  Google Scholar 

  29. Spanjers H, Bouvier JC, Steenweg P et al (2006) Implementation of in-line infrared monitor in full-scale anaerobic digestion process. Water Sci Technol 53(4–5):55–61

    Article  CAS  PubMed  Google Scholar 

  30. Quintelas C, Mesquita DP, Ferreira EC, Amaral AL (2019) Quantification of pharmaceutical compounds in wastewater samples by near infrared spectroscopy (NIR). Talanta 194:507–513

    Article  CAS  PubMed  Google Scholar 

  31. Eccleston R, Wolf C, Balsam M et al (2016) Mid-infrared spectroscopy for monitoring of anaerobic digestion processes—prospects and challenges. Chem Eng Technol 39:627–636

    Article  CAS  Google Scholar 

  32. Michel K, Bureau B, Boussard-Plédel C et al (2004) Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sensor Actuators B-Chem 101(1–2):252–259

    Article  CAS  Google Scholar 

  33. Lu R, Li W, Mizaikoff B, Katzir A et al (2016) High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Nat Protoc 11:377–386

    Article  CAS  PubMed  Google Scholar 

  34. Mizaikoff B (2013) Waveguide-enhanced mid-infrared chem/bio sensors. Chem Soc Rev 42(22):8683–8699

    Article  CAS  PubMed  Google Scholar 

  35. Karlowatz M, Kraft M, Mizaikoff B (2004) Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field spectroscopy. Anal Chem 76(9):2643–2648

    Article  CAS  PubMed  Google Scholar 

  36. Benéitez N, Baumgartner B, Missinne J et al (2020) Mid-IR sensing platform for trace analysis in aqueous solutions based on a germanium-on-silicon waveguide chip with a mesoporous silica coating for analyte enrichment. Opt Express 28:27013–27027

    Article  ADS  PubMed  Google Scholar 

  37. Haas J, Stach R, Sieger M et al (2016) Sensing chlorinated hydrocarbons via miniaturized GaAs/AlGaAs thin-film waveguide flow cells coupled to quantum cascade lasers. Anal Methods 8:6602

    Article  CAS  Google Scholar 

  38. Banna MH, Imran S, Francisque A, Najjaran H, Sadiq R, Rodriguez M, Hoorfar M (2014) Online drinking water quality monitoring: review on available and emerging technologies. Crit Rev Environ Sci Technol 44(12):1370–1421

    Article  CAS  Google Scholar 

  39. Li J, Tong Y, Guan L, Wu S, Li D (2019) A turbidity compensation method for COD measurements by UV–vis spectroscopy. Optik 186:129–136

    Article  ADS  CAS  Google Scholar 

  40. Hu Y, Wen Y, Wang X (2016) Novel method of turbidity compensation for chemical oxygen demand measurements by using UV–vis spectrometry. Sensor Actuators B-Chem 227:393–398

    Article  CAS  Google Scholar 

  41. Lihua Z, Haijiang T, Jiaran Z, Daoliang L, Shuangyin L (2014) A novel measurement principle and basic performance of turbidimeter based on dual detection intensity ratio. Sens Lett 12:710–714

    Article  Google Scholar 

  42. Zhu Y, Cao P, Liu S, Zheng Y, Huang C (2020) Development of a new method for turbidity measurement using two NIR digital cameras. ACS Omega 5(10): 5421–5428

    Google Scholar 

  43. Ji Y, Chen F (2014) The research and design of intelligent photoelectric turbidity sensor. Appl Mech Mater 602–605:2531–2534

    Article  Google Scholar 

  44. De Roos AJ, Gurian PL, Robinson LF, Rai A, Zakeri I, Kondo MC (2017) Review of epidemiological studies of drinking-water turbidity in relation to acute gastrointestinal illness. Environ Health Perspect 125(8):086003

    Article  PubMed  PubMed Central  Google Scholar 

  45. Léziart T, Dutheil de la Rochere PM et al (2019) Effect of turbidity on water disinfection by chlorination with the emphasis on humic acids and chalk. Environ Technol 40(13):1734–1743

    Article  PubMed  Google Scholar 

  46. LeChevallier MW, Evans TM, Seidler RJ (1981) Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water. J Appl Environ Micro-biol 42:159–167

    Article  ADS  CAS  Google Scholar 

  47. World Health Organization (2017) Guidelines for drinking-water quality: fourth edition incorporating first addendum, 4th edn + 1st add. World Health Organization, 2017. https://apps.who.int/iris/handle/10665/254637

  48. Austin ÅN, Hansen JP, Donadi S, Eklöf JS (2017) Relationships between aquatic vegetation and water turbidity: a field survey across seasons and spatial scales. PLoS ONE 12(8):e0181419

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bilotta GS, Brazier RE (2008) Understanding the influence of suspended solids on water quality and aquatic biota. Water Res 42(12):2849–2861

    Article  CAS  PubMed  Google Scholar 

  50. Ayala A, Leal LO, Ferrer L et al (2012) Multiparametric automated system for sulfate, nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis. Microchem J 100:55–60

    Article  CAS  Google Scholar 

  51. Kortazar L, Sáez J, Agirre J et al (2014) Application of multivariate analysis to the turbidimetric determination of sulphate in seawater. Anal Methods 6:3510–3514

    Article  CAS  Google Scholar 

  52. Lima JLFC, Rangel AOSS, Souto MRS et al (1997) Turbidimetric flow-injection determination of total nitrogen and potassium in vegetables. Anal Chim Acta 356:259–265

    Article  CAS  Google Scholar 

  53. Torres JRO, Tubino M (1994) Turbidimetric determination of potassium by flow injection analysis. Anal Lett 27:1625–1636

    Article  CAS  Google Scholar 

  54. Simonet BM, Grases F, March JG (2001) Determination of phosphate in urine by sequential injection analysis. Fresen J Anal Chem 369:96–102

    Article  CAS  Google Scholar 

  55. Zenki M, Iwadou Y (2002) Repetitive determination of chloride using the circulation of the reagent solution in closed flow-through system. Talanta 58(6):1055–1061

    Article  CAS  PubMed  Google Scholar 

  56. Mesquita RBR, Fernandes SMV, Rangel AOSS (2002) Turbidimetric determination of chloride in different types of water using a single sequential injection analysis system. J Environ Monit 4:458–461

    Article  CAS  PubMed  Google Scholar 

  57. Vieira JA, Raimundo IM, Reis BF (2001) Turbidimetric determination of sulphate employing gravity flow-based systems. Anal Chim Acta 438:75–81

    Article  CAS  Google Scholar 

  58. Turkey NS, Jeber JN (2021) A flow analysis system integrating an optoelectronic detector for the quantitative determination of active ingredients in pharmaceutical formulations. Microchem J 160:105710

    Article  CAS  Google Scholar 

  59. Lambrou TP, Panayiotou CG, Anastasiou CC (2012) A low-cost system for real time monitoring and assessment of potable water quality at consumer sites. In: Proceedings of the sensors IEEE, Taipei, Taiwan, pp 1–4, 28 Oct 2012

    Google Scholar 

  60. Matos T, Faria CL, Martins MS et al (2020) Design of a multipoint cost-effective optical instrument for continuous in-situ monitoring of turbidity and sediment. Sensors 20:3194

    Article  ADS  PubMed Central  Google Scholar 

  61. Gillett D, Marchiori A (2019) A low-cost continuous turbidity monitor. Sensors 19(14):3039

    Article  ADS  PubMed Central  Google Scholar 

  62. Kelley CD, Krolick A, Brunner L et al (2014) An affordable open-source turbidimeter. Sensors 14(4):7142–7155

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bilro L, Alberto N, Pinto JL, Nogueira R (2012) Optical sensors based on plastic fibers. Sensors (Basel) 12(9):12184–12207

    Article  ADS  CAS  Google Scholar 

  64. Yeoh S, Matjafri MZ, Mutter KM, Oglat AA (2019) Plastic fiber evanescent sensor in measurement of turbidity. Sens Actuators A 285:1–7

    Article  CAS  Google Scholar 

  65. Murphy K, Heery B, Sullivan T et al (2015) A low-cost autonomous optical sensor for water quality monitoring. Talanta 132:520–527

    Article  CAS  PubMed  Google Scholar 

  66. Safford HR, Bischel HN (2019) Flow cytometry applications in water treatment, distribution, and reuse: a review. Water Res 151:10–133

    Article  Google Scholar 

  67. Koch C, Harnisch F, Schröder U, Müller S (2014) Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics. Front Microbiol 5:273

    Article  PubMed  PubMed Central  Google Scholar 

  68. Olivieri A, Crook J, Anderson M et al (2016). Expert panel final report: evaluation of the feasibility of developing uniform water recycling criteria for direct potable reuse. California State Water Resources Control Board

    Google Scholar 

  69. Scottish Water (2014) Business plan 2015 to 2021 appendices

    Google Scholar 

  70. Günther S, Trutnau M, Kleinsteuber S et al (2009) Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2-phenylindole) and tetracycline labeling. Appl Environ Microbiol 75(7):2111–2121

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  71. Mehlig L, Petzold M, Heder C et al (2013) Biodiversity of polyphosphate accumulating bacteria in eight WWTPs with different modes of operation. J Environ Eng 139(8):1089–1098

    Article  CAS  Google Scholar 

  72. Brown MR, Camezuli S, Davenport RJ et al (2014) Flow cytometric quantification of viruses in activated sludge. Water Res 68:414–422

    Article  Google Scholar 

  73. Foladori P, Laura B, Gianni A, Giuliano Z (2007) Effects of sonication on bacteria viability in wastewater treatment plants evaluated by flow cytometry–fecal indicators, wastewater and activated sludge. Water Res 41(1):235–243

    Article  CAS  PubMed  Google Scholar 

  74. Foladori P, Tamburini S, Bruni L (2010) Bacteria permeabilization and disruption caused by sludge reduction technologies evaluated by flow cytometry. Water Res 44(17):4888–4899

    Article  CAS  PubMed  Google Scholar 

  75. Magic-Knezev A, Zandvliet L, Oorthuizen WA et al (2014). In: Nakamoto N, Graham N, Collins MR, Gimbel R (eds) Progress in slow sand and alternative biofiltration processes, p 51e58

    Google Scholar 

  76. Wang Y, Hammes F, Boon N, Egli T (2007) Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 mm pore size filters and shape dependent enrichment of filterable bacterial communities. Environ Sci Technol 41:7080–7086

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Vignola M, Werner D, Wade MJ et al (2018) Medium shapes the microbial community of water filters with implications for effluent quality. Water Res 129:499–508

    Article  PubMed  Google Scholar 

  78. Nie X, Liu W, Chen M et al (2016) Flow cytometric assessment of the effects of chlorine, chloramine, and UV on bacteria by using nucleic acid stain and 5-cyano-2,3-ditolyltetrazolium chloride. Front Environ Sci Eng 10(6):1–9

    Article  CAS  Google Scholar 

  79. Kong X, Ma J, Wen G, Wei Y (2016) Considerable discrepancies among HPC, ATP, and FCM detection methods in evaluating the disinfection efficiency of gram-positive and -negative bacterium by ultraviolet radiation and chlorination. Desalin Water Treat 57(37):17537–17546

    Article  CAS  Google Scholar 

  80. Cheswick R, Moore G, Nocker A et al (2020) Chlorine disinfection of drinking water assessed by flow cytometry: new in-sights. Environ Technol Innov 19:101032

    Article  Google Scholar 

  81. Trask BJ, van den Engh GJ, Elgershuizen JHBW (1982) Analysis of phytoplankton by flow cytometry. Cytometry 2:258–264

    Article  CAS  PubMed  Google Scholar 

  82. Vives-Rego J, Lebaron P, Nebe-von Caron G (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 24:429–444

    Article  CAS  PubMed  Google Scholar 

  83. Olson RJ, Shalapyonok A, Sosik HM (2003) An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot. Deep Sea Res Part I Oceanogr Res Pap 50:301–315

    Article  ADS  Google Scholar 

  84. Gérikas Ribeiro C, Marie D, Lopes dos Santos A et al (2016) Estimating microbial populations by flow cytometry: comparison between instruments. Limnol Oceanogr Methods 14:750–758

    Article  Google Scholar 

  85. Pomati F, Kraft NJ, Posch T et al (2013) Individual cell based traits obtained by scanning flow-cytometry show selection by biotic and abiotic environmental factors during a phytoplankton spring bloom. PLoS ONE 8(8):e71677

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  86. Favere J, Buysschaert B, Boon N, De Gusseme B (2020) Online microbial fingerprinting for quality management of drinking water: full-scale event detection. Water Res 170:115353

    Article  CAS  PubMed  Google Scholar 

  87. Dubelaar GBJ, Gerritzen PL (2000) CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Sci Mar 64:255–265

    Article  Google Scholar 

  88. Broger T, Odermatt RP, Huber P, Sonnleitner B (2011) Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol 154:240–247

    Article  CAS  PubMed  Google Scholar 

  89. Hammes F, Broger T, Weilenmann HU et al (2012) Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis. Cytometry A 81(6):508–516

    Article  PubMed  Google Scholar 

  90. Farhat N, Kim LH, Vrouwenvelder JS (2020) Online characterization of bacterial processes in drinking water systems. npj Clean Water 3(16)

    Google Scholar 

  91. Buysschaert B, Vermijs L, Naka A et al (2018) Online flow cytometric monitoring of microbial water quality in a full-scale water treatment plant. npj Clean Water 1

    Google Scholar 

  92. Besmer MD, Weissbrodt DG, Kratochvil BE et al (2014) The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems. Front Microbiol 5:265

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gӧrӧcs Z, Tamamitsu M, Bianco V et al (2018) A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. Light Sci Appl 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  94. Smart PL, Finlayson BL, Rylands WD, Ball CM (1976) The relation of fluorescence to dissolved organic carbon in surface waters. Water Res 10:805–811

    Article  Google Scholar 

  95. Dienert F (1910) De la recherche des substances fluorescentes dans le controle de la sterilisation des eaux. C R Hehd Seances Acad Sci Paris 150(8):487–488

    Google Scholar 

  96. Chelsea Instruments (2021) https://chelsea.co.uk/product-category/fluorometers/. Accessed 25 Feb 2021

  97. Modern Water (2021) BODCheck modern water. http://www.modernwater.com/assets/downloads/Factsheets/MW_Factsheet_BODChek_highres.pdf. Accessed 25 Feb 2021

  98. TriOS (2021) https://www.trios.de/en/matrixflu-vis.html. Accessed 25 Feb 2021

  99. Moran MA, Kujawinski EB, Stubbins A et al (2016) Deciphering ocean carbon in a changing world. PNAS 113(12):3143–3151. https://doi.org/10.1073/pnas.1514645113

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hudson N, Baker A, Ward D et al (2008) Can fluorescence spectrometry be used as a surrogate for the biochemical oxygen demand (BOD) test in water quality assessment? An example from South West England. Sci Total Environ 391:149–158

    Article  ADS  CAS  PubMed  Google Scholar 

  101. Coble PC, Green S, Blough NV et al (1990) Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348:432–435

    Article  ADS  CAS  Google Scholar 

  102. Coble PC (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51(4):325–346. https://doi.org/10.1016/0304-4203(95)00062-3

    Article  CAS  Google Scholar 

  103. Carstea E, Bridgeman J, Baker A et al (2016) Fluorescence spectroscopy for wastewater monitoring: a review. Water Res 95:205–219

    Article  CAS  PubMed  Google Scholar 

  104. Henderson RK, Baker A, Murphy KR et al (2009) Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Res 43(4):863–881

    Article  CAS  PubMed  Google Scholar 

  105. Baker A, Andersen MS, Marjo CE et al (2014) Investigation of pollution in rivers and groundwater by fluorescence, pp 1–14

    Google Scholar 

  106. Sorensen JP, Lapworth DJ, Marchant BP et al (2015) In-situ tryptophan-like fluorescence: a real-time indicator of faecal contamination in drinking water supplies. Water Res 81:38–46

    Article  CAS  PubMed  Google Scholar 

  107. Sorensen JPR, Sadhu A, Sampath G et al (2016) Are sanitation interventions a threat to drinking water supplies in rural India? An application of tryptophan-like fluorescence. Water Res 88:923–932

    Article  CAS  PubMed  Google Scholar 

  108. Guan R, Dong B, Xu C et al (2020) A strategy to construct fluorescent non-aromatic small-molecules: hydrogen bonds contributing to the unexpected fluorescence. Chem Commun 56:4424

    Article  CAS  Google Scholar 

  109. Abbas O, Rebufa C, Dupuya N et al (2006) Assessing petroleum oils biodegradation by chemometric analysis of spectroscopic data. Talanta 75(4):857–871

    Article  Google Scholar 

  110. Pharr DY, McKenzie JK, Hickman AB (1992) Fingerprinting petroleum contamination using synchronous scanning fluorescence spectroscopy. Groundwater 30(4):484–489

    Article  CAS  Google Scholar 

  111. Persichetti G, Viaggiu E, Testa G et al (2019) Spectral discrimination of planktonic cyanobacteria and microalgae based on deep UV fluorescence. Sens Actuators B-Chem 284:228–235. https://doi.org/10.1016/j.snb.2018.12.111

    Article  CAS  Google Scholar 

  112. Gregor J, Maršálek BA (2005) Simple in vivo fluorescence method for the selective detection and quantification of freshwater cyanobacteria and eukaryotic algae. Acta Hydro-Chim Hydrobiol 33:142–148

    Article  CAS  Google Scholar 

  113. Choo F, Zamyadi A, Newton K, Newcombe G et al (2018) Performance evaluation of in situ fluorometers for real-time cyanobacterial monitoring. H2Open J 1(1):26–46. https://doi.org/10.2166/h2oj.2018.009

  114. Carstea EM (2012) Fluorescence spectroscopy as a potential tool for in-situ monitoring of dissolved organic matter in surface water systems. Water Pollut (Nuray Balkis IntechOpen). https://doi.org/10.5772/28979

    Article  Google Scholar 

  115. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications, 2nd edn. Wiley-VCH. https://doi.org/10.1002/9783527650002

  116. Baker A (2005) Thermal fluorescence quenching properties of dissolved organic matter. Water Res 39(18):4405–4412

    Article  CAS  PubMed  Google Scholar 

  117. Carstea EM, Baker A, Bieroza M et al (2014) Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching. Water Res 61:152–161

    Article  CAS  PubMed  Google Scholar 

  118. Carstea EM, Zakharova YS, Bridgeman J (2018) Online fluorescence monitoring of effluent organic matter in wastewater treatment plants. J Environ Eng 144:1–9. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001360

    Article  Google Scholar 

  119. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12(21):4161–4170. https://doi.org/10.1021/bi00745a020

  120. Reynolds DM, Ahmad SR (1995) The effect of metal-ions on the fluorescence of sewage waste-water. Water Res 29(9):2214–2216

    Article  CAS  Google Scholar 

  121. Yamashita Y, Jaffe R (2008) Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environ Sci Technol 42(19):7374–7379

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Ryan DK, Weber JH (1982) Copper(II) complexing capacities of natural waters by fluorescence quenching. Environ Sci Technol 16:866–872

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Heibati M, Stedmon CA, Stenroth K et al (2017) Assessment of drinking water quality at the tap using fluorescence spectroscopy. Water Res 125:1–10. https://doi.org/10.1016/j.watres.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  124. Lakowicz J (2006) Principles of fluorescence spectroscopy. Springer, US, NY, USA

    Book  Google Scholar 

  125. Kothawala DN, Murphy KR, Stedmon CA et al (2013) Inner filter correction of dissolved organic matter fluorescence. Limnol Oceanogr Methods 11(12):616–630

    Article  Google Scholar 

  126. Vodacek A, Philpot WD (1987) Environmental effects on laser induced fluorescence spectra of natural waters. Remote Sens Environ 21(1):83–95

    Article  ADS  Google Scholar 

  127. Baker A, Elliott S, Lead JR (2007) Effects of filtration and pH perturbation on organic matter fluorescence. Chemosphere 67(10):2035–2043

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Patel-Sorrentino N, Mounier S, Benaim JY (2002) Excitation-emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Res 36(10):2571–2581

    Article  CAS  PubMed  Google Scholar 

  129. Osburn CL, Morris DP, Thorn KA et al (2001) Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry 54:251–278

    Article  CAS  Google Scholar 

  130. Chen J, Gu BH, LeBoeuf EJ et al (2002) Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 48(1):59–68

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Conmy RN, Del Castillo CE, Downing BD et al (2014) Experimental design and quality assurance: in situ fluorescence instrumentation. In: Coble PG, Lead JR, Baker A, Reynolds DM, Spencer RGM (eds) Aquatic organic matter fluorescence. Cambridge University Press, New York, pp 190–230

    Chapter  Google Scholar 

  132. Delauney L, Compère C (2010) Biofouling protection for marine environmental sensors. Ocean Sci 6:503–511

    Article  ADS  CAS  Google Scholar 

  133. Kneipp K, Kneipp H, Itzkan I et al (2002) Ultrasensitive chemical analysis by Raman spectroscopy. J Phys Cond Matt 14:R597–R624

    Article  CAS  Google Scholar 

  134. McCreery RL (2005) Raman spectroscopy for chemical analysis, vol 225. John Wiley & Sons

    Google Scholar 

  135. Ferraro JR, Nakamoto K, Brown CW (2003) Chapter 3—Special techniques, introductory Raman spectroscopy, 2nd edn. Academic Press, pp 147–206. https://doi.org/10.1016/B978-012254105-6/50006-8

  136. Bradley EB, Frenzel CA (1970) On the exploitation of laser Raman spectroscopy for detection and identification of molecular water pollutants. J Water Res 4:125–128

    Article  CAS  Google Scholar 

  137. Baldwin SF, Brown CW (1972) Detection of ionic water pollutants by laser excited Raman spectroscopy. Water Res 6:1601–1604

    Article  CAS  Google Scholar 

  138. Lombardi DR, Wang C, Sun B et al (1994) Quantitative and qualitative analysis of some inorganic compounds by Raman spectroscopy. J Appl Spectrosc 48(7):875–883(9)

    Google Scholar 

  139. Kauffmann TH, Fontana MD (2015) Inorganic salts diluted in water probed by Raman spectrometry: data processing and performance evaluation. J Sens Actuators B-Chem 209:154–161

    Article  CAS  Google Scholar 

  140. Persichetti G, Bernini R (2016) Water monitoring by optofluidic Raman spectroscopy for in situ applications. Talanta 155:145–152. https://doi.org/10.1016/j.talanta.2016.03.102

    Article  CAS  PubMed  Google Scholar 

  141. Furuya N, Matsuyuki A, Higuchi S et al (1980) Determination of nitrite ion in waste and treated waters by resonance Raman spectrometry. J Water Res 14(7):747–752

    Article  CAS  Google Scholar 

  142. Ianoul A, Coleman T, Asher SA (2002) UV resonance Raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes. J Anal Chem 74(6):1458–1461

    Article  CAS  Google Scholar 

  143. Zhang KG, Hu YL, Li GK (2013) Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy. J Talanta 116(22):712–718

    Article  CAS  Google Scholar 

  144. Wang G, Lim C, Chen L et al (2009) Surface enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury(ii) ions. J Anal Bioanal Chem 394(7):1827–1832

    Article  CAS  Google Scholar 

  145. Eshkeiti A, Narakathu BB, Reddy ASG et al (2011) A novel inkjet printed surface enhanced Raman spectroscopy (SERS) substrate for the detection of toxic heavy metals. J Procedia Eng 25(35):338–341

    Article  CAS  Google Scholar 

  146. Bodelón G, Pastoriza-Santos I (2020) Recent progress in surface-enhanced Raman scattering for the detection of chemical contaminants in water. Front Chem 478(8):1–8. https://doi.org/10.3389/fchem.2020.00478

    Article  CAS  Google Scholar 

  147. Marino-Lopez A, Sousa-Castillo A, Blanco-Formoso M et al (2019) Microporous plasmonic capsules as stable molecular sieves for direct SERS quantification of small pollutants in natural waters. Chemnanomat 5:46–50. https://doi.org/10.1002/cnma.201800355

    Article  CAS  Google Scholar 

  148. de Albuquerque CDL, Sobral-Filho RG, Poppi RJ et al (2018) Digital protocol for chemical analysis at ultralow concentrations by surface-enhanced Raman scattering. Anal Chem 90:1248–1254. https://doi.org/10.1021/acs.analchem.7b03968

    Article  CAS  PubMed  Google Scholar 

  149. Xie YF, Wang X, Han XX et al (2011) Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs. J Raman Spectrosc 42(5):945–950

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genni Testa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Testa, G., Persichetti, G., Bernini, R. (2022). Optical Spectroscopy for on Line Water Monitoring. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_8

Download citation

Publish with us

Policies and ethics