Skip to main content

Inland Water Altimetry: Technological Progress and Applications

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Part of the book series: Springer Water ((SPWA))

Abstract

Hydrology, which is one of the oldest scientific disciplines, has experienced multiple technological and methodological breakthroughs over the last three decades. The advent of satellite radar altimetry have participated to a new range of applications in the monitoring of the continental water heights (on lakes, rivers, floodplains), in the study of global water cycle, and with a high range of scientific and societal applications. Satellite altimetry which was initially designed for oceanography has been widely used since the launch of Topex / Poseidon in 1992 in Hydrology because and it has allowed to calculate water height over the continental water bodies without restrictions, continuously, globally, regularly, and accurately. We present in this chapter the basics of the technics and how the data are processed, its forces and limitations, how it can be used together with other technics, how it can be assimilated into models, and what are the main outcomes over the last thirty years. Among hundreds of papers that are presenting applications of satellite altimetry in hydrology, we have done the choice to strengthen, what we believe are key studies that have left their mark on this discipline: Studies all centered on the use of satellite altimetry, for lakes, for rivers, for monitoring of artificial reservoirs, and how these measurements can be used in hydrological model in particular for studying ungauged basins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    River & Lake (tethys.eaprs.cse.dmu.ac.uk/RiverLake).

  2. 2.

    DAHITI (dahiti.dgfi.tum.de).

  3. 3.

    Hidrosat (hidrosat.ana.gov.br).

  4. 4.

    AltWater (http://altwater.dtu.space/).

References

  1. Arsen A, Cretaux JF, Abarca-Del-Rio R (2015) Use of SARAL/AltiKa over mountainous lakes, intercomparison with Envisat mission J Adv Space Res. The Saral/ALtiKa satellite Altimetry Mission, 38:534–548. https://doi.org/10.1080/01490419.2014.1002590

  2. Azarderakhsh M, Rossow WB, Papa F, Norouzi H, Khanbilvardi R (2011) Diagnosing water variations within the Amazon basin using satellite data. J Geophys Res 116:D24107. https://doi.org/10.1029/2011JD015997

  3. Bamber JL (1994) Ice sheet altimeter processing scheme. Int J Remote Sens 15(4):925–938

    Google Scholar 

  4. Becker M, Silva JS, Calmant S, Robinet V, Seyler F (2014) Water level fluctuations in the Congo Basin derived from Envisat satellite altimetry. Remote Sens 6(10):9340–9358

    Article  ADS  Google Scholar 

  5. Biancamaria S, Schaedele T, Blumstein D, Frappart F, Boy F, Desjonqueres J-D, Pottier C, Blarel F, Fernando N (2018) Validation of jason-3 tracking modes over French rivers. Remote Sens Environ 209:77–89

    Article  ADS  Google Scholar 

  6. Biancamaria S, Frappart F, Leleu A-S et al (in revision) (2017) Satellite altimetry water elevations performance over a 200 m wide river: evaluation over the Garonne River. Adv Space Res. https://doi.org/10.1016/j.asr.2016.10.008

  7. Biancamaria S, Hossain F, Lettenmaier DP (2011) Forecasting transboundary river water elevations from space. Geophys Res Lett 38(L11401). https://doi.org/10.1029/2011GL047290

  8. Biemans H, Haddeland I, Kabat P, Ludwig F, Hutjes RWA, Heinke IJ, Von Bloh W, Gerten D (2011) Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resourc Res 47:W03509.https://doi.org/10.1029/2009WR008929

  9. Birkett CM (1998) Contribution of the TOPEX NASA Radar Altimeter to the global monitoring of large rivers and wetlands. Water Resour Res 34(5):1223–1239. https://doi.org/10.1029/98WR00124

    Article  ADS  CAS  Google Scholar 

  10. Birkett CM, Beckley B (2010) Investigating the performance of the JASON-2/OSTM radar altimeter over lakes and reservoirs. Mar Geodesy 33(1):204–238

    Article  Google Scholar 

  11. Birkett CM (1995) The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J Geophys Res [Oceans] 100(C12):25179–25204

    Google Scholar 

  12. Birkett CM et al (2002) Surface water dynamics in the Amazon Basin: application of satellite radar altimetry. J Geophys Res 107: D20, 8059. https://doi.org/10.1029/2001JD000609

  13. Birkinshaw SJ, O’Donneell GM, Moore P, Kilsby CG, Fowler HJ, Berry PAM (2010) Using satellite altimetry data to augment flow estimation techniques on the Mekong River. Hydrol Process 24:3811–3825. https://doi.org/10.1002/hyp.7811

    Article  ADS  Google Scholar 

  14. Birkinshaw SJ, Moore P, Kilsby CG, O Donnel GM, Hardy AJ, Berry P (2014) Daily discharge estimation at ungauged river sites using remote sensing. Hydrol Proc 28:1043–1054

    Google Scholar 

  15. Blumstein D, Lasson L, Le Gac S et al (2019) Major upgrade of OLTC on sentinel-3A and 3B in 2018: benefits for inland waters users. ESA Living Planet Symposium, Milan, Italy

    Google Scholar 

  16. Boergens E, Buhl S, Dettmering D, Klüppelberg C, Seitz F (2016) Combination of multi-mission altimetry data along the Mekong River with spatio-temporal kriging. J Geod

    Google Scholar 

  17. Calmant S, Seyler F, Cretaux JF (2008) Monitoring continental surface waters by satellite altimetry, survey in geophysics, special issue on ‘Hydrology from Space’ 29(4–5):247–269. https://doi.org/10.1007/s10712-008-9051-1

  18. Cerri L, Berthias J-P, Bertiger WI, Haines BH, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standarts for the jason series of altimeter misisons. Mar Geodesy 33(S1):379–418

    Article  Google Scholar 

  19. Chao BF, Wu Y, Hand Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Science 320212–4

    Google Scholar 

  20. Chelton DB, Walsh E, MacArthur J (1989) Pulse compression and sea level tracking in satellite altimetry. J Atmos Ocean Technol 6:407–438

    Article  Google Scholar 

  21. Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS (2000) Satellite altimetry. In: Fu LL, Cazenave A (eds) Satellite altimetry and Earth sciences: a handbook of techniques and applications. Academic Press, San Diego, USA, pp 1–132

    Google Scholar 

  22. Collischonn W, Allasia D, Silva BC, Tucci CEM (2007) The MGB-IPH model for large-scale rainfall-runoff modelling. Hydrol Sci J 52(5):878–895

    Google Scholar 

  23. Cooley SW, Ryan JC, Smith L (2021) Human alteration of global surface water storage variability. Nature 591:78–81. https://doi.org/10.1038/s41586-021-03262-3

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Cretaux J-F, Abarca Del Rio R, Berge-Nguyen M et al (2016) Lake volume monitoring from space, survey in geophysics. 37:269–305. https://doi.org/10.1007/s10712-016-9362-6

  25. Cretaux J-F, Bergé-Nguyen M, Calmant S, Jamangulova N, Satylkanov R, Lyard F, Perosanz F, Verron J, Montazem AS, Leguilcher G, Leroux D, Barrie J, Maisongrande P, Bonnefond P (2018) Absolute calibration/validation of the altimeters on Sentinel-3A and Jason-3 over the lake Issykkul. Remote Sens 10:1679. https://doi.org/10.3390/rs10111679

  26. Cretaux J-F, Biancamaria S, Arsen A, Bergé-Nguyen M, Becker M (2015) Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin. Environ Res Lett 10(1):015002. https://doi.org/10.1088/1748-9326/10/1/015002

  27. Crétaux J-F, Calmant S, Romanovski V, Perosanz F, Tashbaeva S, Bonnefond P, Moreira D, Shum CK, Nino F, Bergé-Nguyen M, Fleury S, Gegout P, Abarca Del Rio R, Maisongrande P (2011) Absolute calibration of Jason radar altimeters from GPS kinematic campaigns over Lake Issykkul. Mar Geodesy 34(3–4):291–318. https://doi.org/10.1080/01490419.2011.585110

  28. Crétaux J-F, Nielsen K, Frappart F, Papa F, Calmant S, Benveniste J (2017) Hydrological applications of satellite altimetry: rivers, lakes, man-made reservoirs, inundated areas (CRC Press, 2017), earth obse edn

    Google Scholar 

  29. Downing JA, Prairie YT, Cole JJ et al (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388

  30. Duan Z, Bastiaanssen WGM (2013) Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens Environ 134:403–416. https://doi.org/10.1016/j.rse.2013.03.010

    Article  ADS  Google Scholar 

  31. Ejido A, Smith W (2017) Fully focus SAR altimetry: theory and applications. IEEE trans Geosci Remote Sen 55:1

    Google Scholar 

  32. Finsen F, Milzow C, Smith R, Berry P, Bauer-Gottwein P (2014) Using radar altimetry to update a large-scale hydrological model of the Brahmapoutra river basin. Hydrol Res 45(1):148–164. https://doi.org/10.2166/nh.2013.191

    Article  Google Scholar 

  33. Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A (2006) Preliminary results of ENVISAT RA-2 derived water levels validation over the Amazon basin. Remote Sens Env 100(2):252–264. https://doi.org/10.1016/j.rse.2005.10.02

    Article  ADS  Google Scholar 

  34. Frappart F, Papa F, Marieu V et al (2015) Preliminary assessment of SARAL/AltiKa observations over the Ganges-Brahmaputra and Irrawaddy Rivers. Mar Geodesy 38(Sup1):568–580. https://doi.org/10.1080/01490419.2014.990591

    Article  Google Scholar 

  35. Frappart F, Papa F, Santos da Silva J et al (2012) Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Env Res Lett 7:044010 (7pp). https://doi.org/10.1088/1748-9326/7/4/044010

  36. Frappart F, Papa F, Famiglietti JS, Prigent C, Rossow WB, Seyler F (2008) Interannual variations of river water storage from a multiple satellite approach: a case study for the Rio Negro River basin. J Geophys Res 113:D21104. https://doi.org/10.1029/2007JD009438

  37. Fu LL, Cazenave A (2001) Satellite altimetry and Earth Science, a hand book of techniques and applications. Int Geophys Ser 69. Academic Press

    Google Scholar 

  38. Gao Q, Makhoul E, Escorihuela MJ, Zribi M, Segui PQ, Garcia P, Roca M (2019) Analysis of Retrackers’ performances and water level retrieval over the Ebro River basin using sentinel-3. Remote Sens 11(6):25. https://doi.org/10.3390/rs11060718

    Article  Google Scholar 

  39. Getirana ACV, Peters-Lidard C (2013) Water discharge estimates from large radar altimetry datasets in the Amazon basin. Hydrol Earth Syst Sci 17:923–933. https://doi.org/10.5194/hess-17-923-2013

    Article  ADS  Google Scholar 

  40. Getirana ACV, Peters-Lidard C (2012) Water discharge estimates from large radar altimetry datasets in the Amazon basin. Hydrol Earth Syst Sci Discuss 9:7591–7611. https://doi.org/10.5194/hessd-9-7591-2012

  41. Gleditsch NP, Hegre H (2000) Shared rivers and interstate conflict. Polit Geogr 19(8):971–996

    Article  Google Scholar 

  42. Gregory JM, White NJ, Church JA, Bierkens MFP, Box JE, Van Der Broeke MR, Cogley JG, Fettweis X, Hanna E, Huybrechts P, Konikow LF, Leclercq PW, Marzeion B, Oerleamns J, Tamisiea ME, Wada Y, Wake LM, Van de Wal RSW (2013) Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J Clim 26:4476–4498

    Article  ADS  Google Scholar 

  43. Hossain F, Katiyar N (2006) Improving flood forecasting in international river basins. EOS (AGU) 87(5):49–50

    Article  ADS  Google Scholar 

  44. Hossain F, Siddique-E-Akbor AH, Mazumdar LC, ShahNewaz SM, Biancamaria S, Lee H, Shum CK (2013) Proof of concept of an altimeter-based river forecasting system for transboundary flow inside Bangladesh. IEEE J Sel Topics in Appl Earth Observ PP(99):1–15. https://doi.org/10.1109/JSTARS.2013.2283402

  45. Huang L, Liu J, Shao Q, Liu R (2011) Changing inland lakes responding to climate warming in northern Tibetan Plateau. Clim Change 24:479–502. https://doi.org/10.1007/s10584-011-0032-x

    Article  ADS  Google Scholar 

  46. Hwang C, Peng M-F, Ning J, Luo J, Sui C-H (2005) Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO. Geophys J Int 161:1–11. https://doi.org/10.1111/j.1365-246X.2005.02518.x

    Article  ADS  Google Scholar 

  47. Jayles C, Chauveau JP, Rozo F (2010) DORIS/JASON-2: Better than 10 cm on-board orbits available for near-real-time altimetry. Adv Space Res 46(12):1497–1512

    Article  ADS  CAS  Google Scholar 

  48. Jiang L, Schneider R, Andersen OB, Bauer-Gottwein P (2017) Cryosat-2 altimetry applications over rivers and lakes. Water 9:211. https://doi.org/10.3390/w9030211

    Article  CAS  Google Scholar 

  49. Jiang L, Nielsen K, Dinardo S, Andersen OB, Bauer-Gottwein P (2020) Evaluation of sentinel-3 SRAL SAR altimetry over Chinese rivers. Remote Sens Environ 237:111546. https://doi.org/10.1016/j.rse.2019.111546

  50. Kang S, Xu Y, You Q, Flügel W, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau, Environ. Res Lett 5:8pp. https://doi.org/10.1088/1748-9326/5/1/015101

  51. Kittel CMM, Nielsen K, Tøttrup C, Bauer-Gottwein P (2018) Informing a hydrological model of the Ogooué with multi-mission remote sensing data. Hydrol Earth Syst Sci 22:1453–1472. https://doi.org/10.5194/hess-22-1453-2018

    Article  ADS  Google Scholar 

  52. Kittel CMM, Jiang LG, Tottrup C, Bauer-Gottwein P (2021) Sentinel3 radar altimetry for river monitoring—a catchment-scale evaluation of satellite water surface evaluation from sentinel-3A and sentinel-3B. HESS, 25:333–357. https://doi.org/10.5194/hess-25-333-2021

  53. Kittel CMM (2020) Satellite radar observations for hydrologic and hydrodynamic modelling, PhD thesis, DTU, dept of environmental engineering, technical university of Denmark

    Google Scholar 

  54. Kleinherenbrink M, Lindenbergh RC, Ditmar PG (2015) Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J Hydrol 521:119–131

    Article  Google Scholar 

  55. Koblinsky CJ, Clarke RT, Brenner AC, Frey H (1993) Measurement of river level variations with satellite altimetry. Water Resour Res 29(6):1839–1848. https://doi.org/10.1029/93WR00542

    Article  ADS  Google Scholar 

  56. Kouraev A, Zakharov EA, Samain O, Mognard-Campbell NM, Cazenave A (2004) Ob’ river discharge from Topex/Poseidon satellite altimetry. Remote Sens Environ 93:238–245. https://doi.org/10.1016/j.rse.2004.07.007

    Article  ADS  Google Scholar 

  57. Lee H, Beighley RE, Alsdorf D, Jung HC, Shum CK, Duan J, Guo J, Yamasaki D, Andreadis K (2011) Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Env 115:3530–3538

    Article  ADS  Google Scholar 

  58. Lei Y, Yang K, Wang B, Sheng Y, Bird BW, Zhang G, Tian L (2014) Response of inland lake dynamics over the Tibetan Plateau to climate change. Climate Change,125(2):281–290. https://doi.org/10.1007/s10584-014-1175-3

  59. Lettenmaier DP, Milly PCD (2009) Land waters and sea level. Nat Geosci 2:452–454. https://doi.org/10.1038/ngeo567

    Article  ADS  CAS  Google Scholar 

  60. Liguang J, Nielsen K, Andersen OB, Bauer-Gottwein P (2020) A bigger picture of how the Tibetan lakes change over the past decade revealed by Cryosat-2 altimetry. J Geophys Res Atmos. https://doi.org/10.1029/2020JD033161

    Article  Google Scholar 

  61. Liu J, Wang S, Yu S, Yang D, Zhang L (2009) Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global Planet Change 67:209–217

    Article  ADS  Google Scholar 

  62. Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729−1742

    Google Scholar 

  63. Maillard P, Bercher N, Calmant S (2015) New processing approaches on the retrieval of water levels in Envisat and SARAL radar altimetry over rivers: a case study of the São Francisco River Brazil. Remote Sens Environ 156:226–241

    Article  ADS  Google Scholar 

  64. Manning R (1891) On the flow of water in open channels and pipes. Trans Civil Eng Ireland 20:161–207

    Google Scholar 

  65. Martin-Puig C, Leuliette E, Lillibridge J, Roca M (2016) Evaluating the performance of Jason-2 open-loop and closed-loop tracker modes. J Atmos Oceanic Technol 33:2277–2288. https://doi.org/10.1175/JTECH-D-16-0011.1

    Article  ADS  Google Scholar 

  66. Michailovsky CI, Milzow C, Bauer-Gottwein P (2013) Assimilation of radar altimetry to a routing model of the Brahmaputra River. Water Resour Res 49:4807–4816

    Article  ADS  Google Scholar 

  67. Morris CS, Gill SK (1994) Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes. J Geophys Res 99(C12):24527–24539. https://doi.org/10.1029/94JC01642

    Article  ADS  Google Scholar 

  68. Nielsen K, Stenseng L, Andersen OB, Villadsen H, Knudsen P (2015) Validation of CryoSat-2 SAR mode based lake levels. Remote Sens Environ 171:162–170

    Article  ADS  Google Scholar 

  69. Paiva RCD, Buarque DC, Colischonn W et al (2013) Large-scale hydrologic and hydrodynamic modelling of the Amazon River basin. Water Resour Res 49(3):1216–1243. https://doi.org/10.1002/wrcr.20067

    Article  Google Scholar 

  70. Paiva RCD, Collischonn W, Bonnet M-P, de Gonçalves LGG, Calmant S, Getirana A, da Santos Silva J (2013b) Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon. Hydrol Earth Syst Sci 10:2879–2925

    Google Scholar 

  71. Papa F, Durand F, Rossow WB, Rahman A, Bala SK (2010) Seasonal and interannual variations of the ganges-Brahmaputra River discharge, 1993–2008 from satellite altimeters. J Geophys Res 115:C12013. https://doi.org/10.1029/2009JC006075

    Article  ADS  Google Scholar 

  72. Papa F, Bala SK, Pandey RK, Durand F, Rahman A, Rossow WB (2012) Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: an update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal. J Geophys Res 117:C11021. https://doi.org/10.1029/2012JC008158

  73. Paris A, de Paiva RD, da Silva JS, Moreira DM, Calmant S, Garambois P-A, Collischonn W, Bonnet M-P, Seyler F (2016) Stage-discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin. Water Resour Res 52:3787–3814

    Article  ADS  Google Scholar 

  74. Ričko M, Birkett CM, Carton JA, Cretaux J-F (2012) Intercomparison and validation of continental water level products derived from satellite radar altimetry. J Appl Rem Sens 6. https://doi.org/10.1117/1.JRS.6.061710

  75. Scherer D, Schwatke C, Dettmering D, Seitz F (2020) Long-term discharge estimation for the lower Mississippi River using satellite altimetry and remote sensing images. Remote Sens 12:2693. https://doi.org/10.3390/rs12172693

    Article  ADS  Google Scholar 

  76. Schutz B (2004) ICESat laser altimetry, EGU, 25–30 April, Nice, France. Geophys Res Abstracts 6:05333

    ADS  Google Scholar 

  77. Schwatke C, Dettmering D, Bosch W, Seitz F (2015) DAHITI–an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol Earth Syst Sci Copernicus GmbH 19:4345–4364. https://doi.org/10.5194/hess-19-4345-2015

    Article  ADS  Google Scholar 

  78. Seyler F, Bonnet M-P, Calmant S, Cauhopé M, Cazenave A, Cochonneau G, Divol J, Do-Minh K, Frappart F, Gennero M-C, Guyenne-Blin K, Huynh F, Leon J-G, Lille D, Maheu C, Mangeas M, Martiny M, Mercier F, Rocquelain G, Tocqueville L, Touraivane L, Zanifé O-Z (2005) CASH « Contribution de l’Altimétrie Spatiale à l’hydrologie » Rapport intermédiaire d’opération d’une recherche financée par le Ministère de la Recherche, Octobre 2005, Décision d’aide n° : 04 T 131.

    Google Scholar 

  79. Sheng YW, Song CQ, Wang JD, Lyons EA, Knox BR, Cox JS, Gao F (2016) Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens Environ 185:129–141

    Article  ADS  Google Scholar 

  80. Silva J, Calmant S, Seyler F, Filho O, Cochonneau G, Mansur WJ (2010) Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens Environ 114(10):2160–2181

    Article  ADS  Google Scholar 

  81. Silva JS, Calmant S, Seyler F, Lee H, Shum CK (2012) Mapping of the extreme stage variations using Envisat altimetry in the Amazon basin rivers. Int Water Technol J 2(1):14–25

    Google Scholar 

  82. Silva J, Calmant S, Seyler F, Moreira DM, Oliveira D, Monteiro A (2014) Radar altimetry aids managing gauge networks. Water Resour Manag 28:587–603. https://doi.org/10.1007/s11269-013-0484-z

    Article  Google Scholar 

  83. Silva JS, Seyler F, Calmant S, Rotunno Filho OC, Roux E, Araujo AAM, Goyot J-L (2012b) Water level dynamics of Amazon wetlands at the watershed scale by satellite altimetry. Int J Remote Sens 33(11):3323–3353. https://doi.org/10.1080/01431161.2010.531914

  84. Song C, Huang B, Ke L, Richards KS (2014) Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. J Hydrol 514:131–144

    Article  Google Scholar 

  85. Taburet N, Zawadzki, Vayre M, Blumstein D, LE Gac S, Boy F, Raynal M, Labroue S, Cretaux J-F, Femenias P (2020) S3MPC: improvement on inland water tracking and water level monitoring from the OLTC onboard Sentinel-3 altimeters. Remote Sens 12(18):AN 3055. https://doi.org/10.3390/rs12183055

  86. Tarpanelli A, Santi E, Tiurian MJ, Filippucci P, Amarnath G, Brocca L (2019) Daily river discharge estimates by merging satellite optical sensors and radar altimetry through artificial neural network. IEEE 57(1):329–341. https://doi.org/10.1109/TGRS.2018.2854625

    Article  Google Scholar 

  87. Tarpanelli A, Brocca L, Barbetta S, Faruolo M, Lacava T, Moramarco T (2015) Coupling MODIS and radar altimetry data for discharge estimation in Poorly Gauged River Basins. IEEE Trans Geosciences Remote Sens 8(1):141–149. https://doi.org/10.1109/JSTARS.2014.2320582

  88. Tourian MJ, Tarpanelli A, Elmi O, Qin T, Brocca L, Moramarco T, Sneeuw N (2016) Spatiotemporal densification of river water level time series by multimission satellite altimetry. Water Resour Res 52:1140–1159

    Article  ADS  Google Scholar 

  89. Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402. https://doi.org/10.1002/2014GL060641

  90. Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) (2011) Coastal altimetry. Springer, Berlin Heidelberg

    Google Scholar 

  91. Villadsen H, Andersen OB, Stenseng L, Nielsen K, Knudsen P (2015) CryoSat-2 altimetry for river level monitoring—evaluation in the Ganges-Brahmaputra River basin. Remote Sens Environ 168:80–89

    Article  ADS  Google Scholar 

  92. Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warmingand precipitation change in East Asia. Geophys Res Lett 35:L14702. https://doi.org/10.1029/2008GL034330

    Article  ADS  Google Scholar 

  93. Wang X, Gong P, Zhao Y et al (2013) Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sens Environ 132:131–144

    Article  ADS  Google Scholar 

  94. Wolf A, Nathrius J, Danielson J, Ward B, Pender J (1999) International river basins of the world. Int J Water Res Devel 15(4):387–427

    Article  Google Scholar 

  95. Zakharova E, Kouraev A, Cazenave A, Seyler F (2006) Amazon River discharge estimated from T/P altimetry. Compte Rendus Géosc 338(3):188–196. https://doi.org/10.1016/j.crte.2005.10.003

  96. Zhang G, Xie H, Kang S, Yi D, Ackley S (2011) Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry. RSE 115:1733–1742. https://doi.org/10.1016/j.rse.2011.03.005

    Article  ADS  Google Scholar 

  97. Zhang G, Bolch T, Chen W, Cretaux J-F (2021) Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basinwide glacier contribution. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.145463

  98. Zwally HJ, Abdalati W, Abshire J, Bentley C, Blair J, Bryan A, Brenner J, Bufton J, Dezio S, Ekholm D, Hancock D, Harding T, Herring B, Minster S, Palm K, Quinn B, Schutz J, Spinehirne RT (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean and land. J Geodynamics 34:3–4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Cretaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cretaux, JF. (2022). Inland Water Altimetry: Technological Progress and Applications. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_6

Download citation

Publish with us

Policies and ethics