Skip to main content

Regional Adaptation of Water Quality Algorithms for Monitoring Inland Waters: Case Study from Irish Lakes

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Abstract

The recent development of the Copernicus programme in Europe has ushered in a new generation of operational earth observing satellites. Field-based investigations and monitoring programmes are costly, time consuming and can be logistically challenging in remote or inaccessible locations. The advantages of in situ data monitoring are that they have very low uncertainties compared to satellite data, but they only provide readings at one location at one time. Satellite data are very complementary to field measurements for long-term and regional monitoring programmes. Through the Environmental Protection Agency (EPA)’s Remote Sensing of Irish Surface Water (INFER) project (2017-W-MS-30), we validated algorithms to infer lake water quality on the island of Ireland using Sentinel 2 imagery, which comprises two European Space Agency (ESA) terrestrial satellites with a combined temporal resolution of 5 days and spatial resolution of 10 m. The project is focused on the selection of optimal algorithms that will be applicable in a regional context in relation to the high cloud cover and relatively small sizes of the water bodies involved. C2RCC and Acolite processors were used to compute the chlorophyll-a and turbidity from identified lakes. Field radiometry was carried out using a TRIOS RAMSES radiometer at several sites to validate the algorithms. Standard field procedures were employed for acquiring glint-free reflectance from the water bodies. Based on the validation with field data, a coupled technique was developed to atmospherically correct and compute water quality parameters. The water quality products generated using Sentinel-2 can be visualized via a web platform (https://eoplatform.ichec.ie/infer). Although the developed techniques offer many benefits for water quality monitoring, it is still challenging in the context of Ireland, where very few cloud-free scenes are available. In addition, the smaller sizes of lakes make it difficult to monitor them using the current resolution of Sentinel-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54(6, part 2):2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. American Public Health Association (APHA) (1999) Standard methods for the examination of water and wastewater, 20th edn. APHA, Washington DC, p 1268

    Google Scholar 

  3. Andrew ME, Wulder MA, Nelson TA (2014) Potential contributions of remote sensing to ecosystem service assessments. Prog Phys Geogr 38(3):328–353. https://doi.org/10.1177/0309133314528942

    Article  Google Scholar 

  4. Birch G, O’Hea L (2007) The chemistry of suspended particulate material in a highly contaminated embayment of Port Jackson (Australia) under quiescent, high-wind and heavy-rainfall conditions. Environ Geol 53:501–516. https://doi.org/10.1007/s00254-007-0662-5

    Article  ADS  CAS  Google Scholar 

  5. Birk S, Ecke F (2014) The potential of remote sensing in ecological status assessment of coloured lakes using aquatic plants. Ecol Ind 46:398–406. https://doi.org/10.1016/j.ecolind.2014.06.035

    Article  CAS  Google Scholar 

  6. Brockmann C, Doerffer R, Peters M, Stelzer K, Embacher S, Ruescas A (2016) Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In: Proceedings of the ESA living planet. Prague, Czech Republic 9–13 May

    Google Scholar 

  7. Brönmark C, Hansson LA (2002) Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29(3):290–307. www.jstor.org/stable/44520612

  8. Carvalho L, McDonald C, de Hoyos C, Mischke U, Phillips G, Borics G, Poikane S, Skjelbred B, Solheim AL, Van Wichelen J, Cardoso AC (2013) Sustaining recreational quality of 44 European lakes: minimizing the health risks from algal blooms through phosphorus control. J Appl Ecol 50(2):315–323. https://doi.org/10.1111/1365-2664.12059

    Article  CAS  Google Scholar 

  9. Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ 91(3–4):332–344. https://doi.org/10.1016/j.rse.2004.03.014

    Article  ADS  Google Scholar 

  10. Davies-Colley RJ, Smith DG (2001) Turbidity, suspended sediment, and water clarity: a review. J Am Water Resour Assoc 37(5):1085–1101. https://doi.org/10.1111/j.1752-1688.2001.tb03624.x

    Article  Google Scholar 

  11. de Araujo Barbosa CC, Atkinson PM, Dearing JA (2015) Remote sensing of ecosystem services: a systematic review. Ecol Ind 52:430–443. https://doi.org/10.1016/j.ecolind.2015.01.007

    Article  Google Scholar 

  12. de Eyto E, Jennings E, Ryder E, Sparber K, Dillane M, Dalton C, Poole R (2016) The response of a humic lake ecosystem to an extreme precipitation event: physical, chemical and biological implications. Inland Waters 6:483–498. https://doi.org/10.1080/IW-6.4.875

    Article  Google Scholar 

  13. Doerffer R, Schiller H (2007) The MERIS case 2 water algorithm. Int J Remote Sens 28(3–4):517–535. https://doi.org/10.1080/01431160600821127

    Article  Google Scholar 

  14. Dörnhöfer K, Oppelt N (2016) Remote sensing for lake research and monitoring–recent advances. Ecol Ind 64:105–122. https://doi.org/10.1016/j.ecolind.2015.12.009

    Article  CAS  Google Scholar 

  15. Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny ML, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81(2):163–182. https://doi.org/10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  16. Environmental Protection Agency (EPA) (2017) Water quality in Ireland 2010–2015. Environmental Protection Agency

    Google Scholar 

  17. Erftemeijer PL, Lewis RRR III (2006) Environmental impacts of dredging on seagrasses: a review. Mar Pollut Bull 52(12):1553–1572. https://doi.org/10.1016/j.marpolbul.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  18. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Euro Communities 5(327):1–72

    Google Scholar 

  19. Felip M, Catalan J (2000) The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J Plankton Res 22(1):91–106. https://doi.org/10.1093/plankt/22.1.91

    Article  Google Scholar 

  20. Free G, Little R, Tierney D, Donnelly K, Caroni R (2006) Environmental protection agency, environmental research technological development and innovation programme. A reference-based typology and ecological assessment system for Irish lakes. In: Preliminary investigations (2002-W-FS-1-M1): Final Report, Environmental Protection Agency. Wexford, Ireland

    Google Scholar 

  21. Giardino C, Pepe M, Brivio PA, Ghezzi P, Zilioli E (2001) Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Sci Total Environ 268(1–3):19–29. https://doi.org/10.1016/S0048-9697(00)00692-6

    Article  ADS  CAS  PubMed  Google Scholar 

  22. GLaSS (2016) Global Lakes Sentinel Services. Final Report Available at: https://cordis.europa.eu/docs/results/313/313256/final1-glass-final-report.pdf. Accessed 20 November 2020

  23. Gons HJ, Rijkeboer M, Ruddick KG (2002) A chlorophyll-retrieval algorithm for satellite imagery (medium resolution imaging spectrometer) of inland and coastal waters. J Plankton Res 24(9):947–951. https://doi.org/10.1093/plankt/24.9.947

    Article  CAS  Google Scholar 

  24. Havens KE, James RT, East TL, Smith VH (2003) N: P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by nonpoint source nutrient pollution. Environ Pollut 122(3):379–390. https://doi.org/10.1016/s0269-7491(02)00304-4

    Article  CAS  PubMed  Google Scholar 

  25. Hestir EL, Brando VE, Bresciani M, Giardino C, Matta E, Villa P, Dekker AG (2015) Measuring freshwater aquatic ecosystems: the need for a hyperspectral global mapping satellite mission. Remote Sens Environ 167:181–195. https://doi.org/10.1016/j.rse.2015.05.023

    Article  ADS  Google Scholar 

  26. Hou X, Feng L, Duan H, Chen X, Sun D, Shi K (2017) Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sens Environ 190:107–121. https://doi.org/10.1016/j.rse.2016.12.006

    Article  ADS  Google Scholar 

  27. Jennings E, Jones S, Arvola L, Staehr PA, Gaiser E, Jones ID, Weathers KC, Weyhenmeyer GA, Chiu CY, de Eyto E (2012) Effects of weather-related episodic events in lakes: an analysis based on high-frequency data. Freshw Biol 57(3):589–601. https://doi.org/10.1111/j.1365-2427.2011.02729.x

    Article  CAS  Google Scholar 

  28. Kutser T, Vahtmäe E, Paavel B, Kauer T (2013) Removing glint effects from field radiometry data measured in optically complex coastal and inland waters. Remote Sens of Environment 133:85–89. https://doi.org/10.1016/j.rse.2013.02.011

    Article  ADS  Google Scholar 

  29. Marcé R, George G, Buscarinu P, Deidda M, Dunalska J, de Eyto E, Flaim G, Grossart HP, Ivanovic V, Lenhardt M, Moreno-Ostos E (2016) Automatic high frequency monitoring for improved lake and reservoir management. Environ Sci Technol 50(20):10780–10794. https://doi.org/10.1021/acs.est.6b01604

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Met Éireann (2001) Analysis of trends at some Irish rainfall stations. In: Technical report 59, The Irish Meteorological Service. Available at: http://edepositireland.ie/bitstream/handle/2262/22820/TN59.pdf?sequence=1. Accessed 1 Oct 2020

  31. Met Éireann (2018) Rainfall climate of Ireland. Available at: https://www.met.ie/climate/what-we-measure/rainfall. Accessed 2 Oct 2020

  32. Moore KA, Wetzel RL, Orth RJ (1997) Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L) survival in an estuary. J Exp Marine Bio Ecol 215(1):115–134. https://doi.org/10.1016/S0022-0981(96)02774-8

    Article  Google Scholar 

  33. Moss B, Hering D, Green AJ, Aidoud A, Becares E, Beklioglu M, Bennion H, Boix D, Brucet S, Carvalho L, Clement B, Davidson T, Declerck S, Dobson M, Donk E, Dudley B, Feuchtmayr H, Friberg N, Grenouillet G, Hillebrand H, Hobaek A, Irvine K, Jeppesen E, Johnson R, Jones I, Kernan M, Lauridsen TL, Manca M, Meerhoff M, Olafsson J, Ormerod S, Papastergiadou E, Penning WE, Ptacnik R, Quintana X, Sandin L, Seferlis M, Simpson G, Triga C, Verdonschot P, Verschoor AM, Weyhenmeyer GA (2009) Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshwater Rev 2(2):103–130. https://doi.org/10.1608/FRJ-2.2.1

    Article  Google Scholar 

  34. Nechad B, Ruddick K, Neukermans G (2009) Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters. In: SPIE Europe remote sensing. International society for optics and photonics 7473(74730H–74730H). https://doi.org/10.1117/12.830700

  35. Nechad B, Ruddick K, Park Y (2010) Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens Environ 114(4):854–866. https://doi.org/10.1016/j.rse.2009.11.022

    Article  ADS  Google Scholar 

  36. Palmer SC, Kutser T, Hunter PD (2015) Remote sensing of inland waters: challenges, progress and future directions. Remote Sens Environ 157:1–8. https://doi.org/10.1016/j.rse.2014.09.021

    Article  ADS  Google Scholar 

  37. Pinardi M, Fenocchi A, Giardino C, Sibilla S, Bartoli M, Bresciani M (2015) Assessing potential algal blooms in a shallow fluvial lake by combining hydrodynamic modelling and remote-sensed images. Water 7(5):1921–1942

    Article  CAS  Google Scholar 

  38. Preisendorfer RW (1976) Hydrologic optics, vol 6. U.S Dept. of Commerce, Washington

    Google Scholar 

  39. Reyjol Y, Argillier C, Bonne W, Borja A, Buijse AD, Cardoso AC, Daufresne M, Kernan M, Ferreira MT, Poikane S, Prat N (2014) Assessing the ecological status in the context of the European water framework directive: where do we go now? Sci Total Environ 497:332–344. https://doi.org/10.1016/j.scitotenv.2014.07.119

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Royal Belgian Institute of Natural Sciences (RBINS) (2018) Acolite atmospheric correction processor. Available at: https://odnature.naturalsciences.be/remsem/software-and-data/acolite. Accessed 10 October 2018

  41. Schaeffer BA, Schaeffer KG, Keith D, Lunetta RS, Conmy R, Gould RW (2013) Barriers to adopting satellite remote sensing for water quality management. Int J Remote Sens 34(21):7534–7544. https://doi.org/10.1080/01431161.2013.823524

    Article  Google Scholar 

  42. Spanhove T, Borre JV, Delalieux S, Haest B, Paelinckx D (2012) Can remote sensing estimate fine-scale quality indicators of natural habitats? Ecol Ind 18:403–412. https://doi.org/10.1016/j.ecolind.2012.01.025

    Article  Google Scholar 

  43. Steel EA, Neuhausser S (2002) Comparison of methods for measuring visual water clarity. J North Am Benthological Soc 21(2):326–335. https://doi.org/10.2307/1468419

    Article  Google Scholar 

  44. Standing Committee of Analysts (1980) The determination of chlorophyll a in aquatic environments. Her Majesty’s Stationary Office, London, UK

    Google Scholar 

  45. Stendera S, Adrian R, Bonada N, Cañedo-Argüelles M, Hugueny B, Januschke K, Pletterbauer F, Hering D (2012) Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: a review. Hydrobiologia 696(1):1–28. https://doi.org/10.1007/s10750-012-1183-0

    Article  Google Scholar 

  46. Vanhellemont Q (2019) Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the landsat and sentinel-2 archives. Remote Sens Environ 225:175–192. https://doi.org/10.1016/j.rse.2019.03.010

    Article  ADS  Google Scholar 

  47. Vanhellemont Q, Ruddick K (2018) Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens Environ 216:586–597. https://doi.org/10.1016/j.rse.2018.07.015

    Article  ADS  Google Scholar 

  48. Vollenweider RA, Giovanardi F, Montanari G, Rinaldi A (1998) Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environ: Off J Int Environ Soc 9(3):329–357. https://doi.org/10.1002/(SICI)1099-095X(199805/06)9:3<329::AID-ENV308>3.0.CO;2-9

  49. Wetzel RG (2001) Limnology: lake and river ecosystems. Gulf professional publishing

    Google Scholar 

  50. Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54(6):2273–2282. https://doi.org/10.4319/lo.2009.54.6_part_2.2273

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Remote Sensing of Irish Surface Waters (2017-W-MS-30) project is funded under the EPA Research Programme 2014-2020. The EPA Research Programme is a Government of Ireland initiative funded by the Department of Environment, Climate and Communications. It is administered by the EPA, which has the statutory function of coordinating and promoting environmental research. Authors would like to thank Martin Holland from Dundalk Institute of Technology who assisted with field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sita Karki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karki, S. et al. (2022). Regional Adaptation of Water Quality Algorithms for Monitoring Inland Waters: Case Study from Irish Lakes. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_2

Download citation

Publish with us

Policies and ethics