Skip to main content

Advanced Combined Geophysical-Geological Mapping of the Sea of Galilee and Its Vicinity

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Part of the book series: Springer Water ((SPWA))

  • 453 Accesses

Abstract

The Sea of Galilee (Lake Kinneret) is located in northern Israel in a complex tectonic setting where the Dead Sea Transform crosscuts other fault systems. The practical absence of boreholes in the sea hinders geological-geophysical data interpretation. For the first time, gravity, magnetic, paleomagnetic, radiometric, and seismological data were analyzed together. An integrated analysis of gravity and seismological data made it possible to clarify some tectonic parameters. The total magnetic field map shows an intricate pattern caused by a combined influence of the basalt flows of various ages and magnetization in and around the sea. Calculated statistical-probabilistic parameters of the magnetic field indicate some essential peculiarities of the medium. The recognized magnetic anomalies were analyzed using methods of quantitative interpretation especially developed for the complex physical-geological environments. 3D magnetic field modeling allowed to reveal the following important features: thick basaltic plate occurrence in the southernmost sea basin, presence of the reversely magnetized basalts near the sea’s eastern boundary, and possible subsidence of basaltic bodies in the center of the pull-apart basin. The paleomagnetic stratigraphy of basalt associations around the Sea of Galilee basin proved to be correlated with the paleomagnetic zones and anomalies in the sea. The paleomagnetic characteristics of traps are linked with the development of the Dead Sea Transform. The previously constructed magnetic-paleomagnetic scheme with predominantly K–Ar dating has been significantly elaborated on the basis of newly arriving data. It is stated that a characteristic feature of the study area is the turns of tectonic blocks, mainly counterclockwise. The revised structural map of the Cover Basalts is intended to coordinate various geological and environmental investigations in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behar N, Shaar R, Tauxe L, Asefaw H, Ebert Y, Heimann A, Koppers AAP, Ron H (2019) Paleomagnetism and paleosecular variations from the Plio-Pleistocene Golan Heights volcanic plateau, Israel. Geochem Geophys Geosyst 20:4319–4335

    Article  ADS  Google Scholar 

  2. Belitzky S, Ben-Avraham Z (2004) The morphotectonic pattern of Lake Kinneret. Israel J Earth Sci 53(3):121–130

    Article  Google Scholar 

  3. Ben-Avraham Z (1978) The structure and tectonic setting of the Levant continental margin Eastern Mediterranean. Tectonophysics 46:3130331

    Article  Google Scholar 

  4. Ben-Avraham Z, Amit G, Golan A, Begin ZB (1990) The bathymetry of Lake Kinneret and its structural significance. Israel J Earth Sci 39:77–84

    Google Scholar 

  5. Ben-Avraham Z, Ginzburg A, Makris J, Eppelbaum L (2002) Crustal structure of the Levant basin, Eastern Mediterranean. Tectonophysics 346:23–43

    Article  ADS  Google Scholar 

  6. Ben-Avraham Z, Hänel R, Villinger H (1978) Heat flow through the Dead Sea rift. Mar Geol 28:253–269

    Article  ADS  Google Scholar 

  7. Ben-Avraham Z, Rozenthal M, Tibor T, Navon H, Wust-Bloch H, Hofstetter R, Rybakov M (2014) Structure and tectonic development of the Kinneret Basin. In: Zohary T et al (eds) Lake Kinneret, ecology and management. Aquatic ecology series 6. Springer, Dordrecht, pp 19–38

    Google Scholar 

  8. Ben-Avraham Z, Shaliv G, Nur A (1986) Acoustic reflectivity and shallow sedimentary structure in the Sea of Galilee—Jordan Valley. Mar Geol 70:175–189

    Article  ADS  Google Scholar 

  9. Ben-Avraham Z, Shosham Y, Klein E, Michelson H, Serruya C (1980) Magnetic survey of Lake Kinneret-central Jordan Valley Israel. Marine Geophys Res 4:257–276

    Article  ADS  Google Scholar 

  10. Ben-Avraham Z, ten-Brink U, Bell R, Reznikov M (1996) Gravity field over the Sea of Galilee: evidence for a composite basin along a transform fault. J Geophys Res 101:533–544

    Article  ADS  Google Scholar 

  11. Ben-Gai Y (2011) Subsurface geology of the southern Lake Kinneret (Sea of Galilee), Dead Sea transform—evidence from seismic reflection data. Israel J Earth Sci 58:163–175

    Article  Google Scholar 

  12. Berggren WA, Hilgen FJ, Langereis CG, Kent DV, Obradovich JD, Raffi I, Raymo ME, Shackleton NJ (1995) Late Neogene chronology: new perspectives in high resolution stratigraphy. GSA Bull 107(11):1272–1287

    Article  Google Scholar 

  13. Borda M (2011) Fundamentals in information theory and coding. Springer

    Book  MATH  Google Scholar 

  14. Cande SC, Kent DV (1995) Revisited calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res 100(4):6095–6095

    ADS  Google Scholar 

  15. Cornee JJ, Roger S, Munch P, Saint Martin JP, Feraud G, Conesa G, Pestrea-Sain Martin S (2002) Messinian events: new constrains from sedimentological investigations and new 40Ar/39Ar ages in the Melilla-Nador Basin (Morocco). Sed Geol 151:127–147

    Article  CAS  Google Scholar 

  16. Curzon I, Nof RN, Laporte M, Lutzky H, Polozov A, Zakovsky D, Shulman H, Goldenberg A, Tatham B, Hamiel Y (2020) The “TRUAA” seismic network: upgrading the Israel seismic network—toward national earthquake early warning system. Seismol Res Lett 91(6):3236–3255

    Article  Google Scholar 

  17. Dembo N, Hamiel Y, Granot R (2015) Intraplate rotational deformation induced by faults: Carmel-Gilboa fault system as a case study. Geol Surv Isr. Report No. GSI/19/2015, Jerusalem, 32p

    Google Scholar 

  18. Domzalski W (1967) Aeromagnetic survey of Israel. Israel Inst Pet Res Geophys. Rep. SMA/482/67, 63p

    Google Scholar 

  19. Eppelbaum LV (2011) Study of magnetic anomalies over archaeological targets in urban conditions. Phys Chem Earth 36(16):1318–1330

    Article  ADS  Google Scholar 

  20. Eppelbaum LV (2014) Four color theorem and applied geophysics. Appl Math 5:358–366

    Article  Google Scholar 

  21. Eppelbaum LV (2015) Quantitative interpretation of magnetic anomalies from bodies approximated by thick bed models in complex environments. Environ Earth Sci 74:5971–5988

    Article  Google Scholar 

  22. Eppelbaum LV (2015) Comparison of 3D integrated geophysical modeling in the South Caucasian and Eastern Mediterranean segments of the Alpine-Himalayan tectonic belt. Izvestiya Acad Sci Azerb Rep Ser: Earth Sci 3:25–45

    Google Scholar 

  23. Eppelbaum LV (2019) Geophysical potential fields: geological and environmental applications. Elsevier, Amsterdam, N.Y

    Google Scholar 

  24. Eppelbaum L, Ben-Avraham Z, Katz Y (2004) Integrated analysis of magnetic, paleomagnetic and K–Ar data in a tectonic complex region: an example from the Sea of Galilee. Geophys Res Lett 31(19), L19602:1–4

    Google Scholar 

  25. Eppelbaum L, Ben-Avraham Z, Katz Y, Marco S (2004) Sea of Galilee: comprehensive analysis of magnetic anomalies. Israel J Earth Sci 53(3):151–171

    Article  Google Scholar 

  26. Eppelbaum LV, Ben-Avraham Z, Katz YI (2007) Structure of the Sea of Galilee and Kinarot Valley derived from combined geological-geophysical analysis. First Break 25(1):21–28

    Article  Google Scholar 

  27. Eppelbaum LV, Ben-Avraham Z, Katz Y, Cloetingh S, Kaban M (2020) Combined multifactor evidence of a giant lower-mantle ring structure below the Eastern Mediterranean. Positioning 11:11–32

    Article  Google Scholar 

  28. Eppelbaum LV, Ben-Avraham Z, Katz Y, Cloetingh S, Kaban M (2021) Giant quasi-ring mantle structure in the African-Arabian junction: results derived from the geological-geophysical data integration. Geotectonics (Springer) 55(1):67–93

    ADS  Google Scholar 

  29. Eppelbaum LV, Katz YI (2012) Key features of seismo-neotectonic pattern of the Eastern Mediterranean. Izvestiya Acad Sci Azerb Rep Ser: Earth Sci 3:29–40

    Google Scholar 

  30. Eppelbaum LV, Katz YI (2015) Eastern Mediterranean: combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages. Mar Pet Geol 65:198–216

    Article  Google Scholar 

  31. Eppelbaum LV, Katz YI (2015) Paleomagnetic mapping in various areas of the Easternmost Mediterranean based on an integrated geological-geophysical analysis. In: Eppelbaum L (ed) New developments in paleomagnetism research. Earth sciences in the 21st Century, Nova Science Publisher, NY, pp 15–52

    Google Scholar 

  32. Eppelbaum LV, Katz YI (2020) Significant tectono-geophysical features of the African-Arabian tectonic region: an overview. Geotectonics (Springer) 54(2):266–283

    Article  ADS  CAS  Google Scholar 

  33. Eppelbaum LV, Katz, YI (2022). Paleomagnetic-geodynamic mapping of the transition zone from ocean to the continent: A review. Applied Sciences 12, Spec. Issue: Advances in Applied Geophysics: 1–20

    Google Scholar 

  34. Eppelbaum L, Katz Y (2022) Combined zonation of the African-Levantine-Caucasian areal of ancient Hominin: review and integrated analysis of paleogeographical stratigraphic and geophysical-geodynamical data. Geosciences (Switzerland) 27(1):1–23

    Google Scholar 

  35. Eppelbaum LV, Katz YI, Ben-Avraham Z (2012) Israel—petroleum geology and prospective provinces. AAPG Eur Newslett 4:4–9

    Google Scholar 

  36. Eppelbaum LV, Khesin BE, Itkis SE (2001) Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeol Prospect 8(3):163–185

    Article  Google Scholar 

  37. Eppelbaum LV, Mishne AR (2011) Unmanned airborne magnetic and VLF investigations: effective geophysical methodology of the near future. Positioning 2(3):112–133

    Article  Google Scholar 

  38. Freund R, Garfunkel Z, Zak I, Goldberg M, Weissbrod T, Derin B (1970) The shear along the Dead Sea Rift. Philos Trans R Soc Lond Ser A 267:69–85

    Google Scholar 

  39. Garfunkel Z (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80:80–108

    Article  ADS  Google Scholar 

  40. Garfunkel Z, Zak I, Freund R (1981) Active faulting in the Dead Sea Rift. Tectonophysics 80:1–26

    Article  ADS  Google Scholar 

  41. Gasperini L, Lazar M, Mazzini A, Lupi M, Haddad A, Hensen C, Schmidt M, Caracausi A, Ligi M, Polonia A (2020) Neotectonics of the Sea of Galilee (northeast Israel): implication for geodynamics and seismicity along the Dead Sea Fault system. Sci Rep 10(11932):1–17

    Google Scholar 

  42. Ginzburg A, Ben-Avraham Z (1986) Structure of the Sea of Galilee Graben, Israel, from magnetic measurements. Tectonophysics 126:153–164

    Article  ADS  Google Scholar 

  43. Haddad A, Alcanie M, Zahradník J, Lazar M, Antunes V, Gasperini L, Polonia A, Mazzini A, Lupi M (2020) Tectonics of the Dead Sea fault driving the July 2018 seismic swarm in the Sea of Galilee (Lake Kinneret), Israel. J Geophys Res: Solid Earth 125:1–14 e2019JB018963

    Google Scholar 

  44. Hazan N, Stein M, Agnon A, Marco S, Nadel D, Negendank JFW, Schwab MJ, Neev D (2005) The late quaternary history of Lake Kinneret (Sea of Galilee), Israel. Quatern Res 63:60–77

    Article  ADS  CAS  Google Scholar 

  45. Heimann A (1990) The development of the Dead Sea Rift and its margins in northern Israel during the Pliocene and Pleistocene. PhD thesis, Hebrew University, Jerusalem, 114p. (in Hebrew, summary in English)

    Google Scholar 

  46. Heimann A, Braun D (2000) Quaternary stratigraphy of the Kinarot Basin, Dead Sea Transform, northeastern Israel. Israel J Earth Sci 49:31–44

    Article  Google Scholar 

  47. Heimann A, Steinitz G, Mor D, Shaliv G (1996) The Cover Basalt formation, its age and its regional and tectonic setting: implications from K-Ar and 40Ar/39Ar geochronology. Israel J Earth Sci 45:55–71

    CAS  Google Scholar 

  48. Hofstetter A, van Eck T, Shapira A (1996) Seismic activity along fault branches of the Dead Sea-Jordan transform system: the Carmel-Tirtza fault system. Tectonophysics 267:317–330

    Article  ADS  Google Scholar 

  49. Hurwitz S, Garfunkel Z, Ben-Gai Y, Reznikov M, Rotstein Y, Gvirtzman H (2002) The tectonic framework of a complex pull-apart basin: seismic reflection observations in the Sea of Galilee, Dead Sea transform. Tectonophysics 359:289–306

    Article  ADS  Google Scholar 

  50. Kashai EL, Croker PF (1987) Structural geometry and evolution of the Dead Sea-Jordan rift system as deduced from new subsurface data. Tectonophysics 141:33–60

    Article  ADS  Google Scholar 

  51. Katz O, Amit R, Yagoda-Biran G, Hatzor YH, Porat N, Medvedev B (2011) Quaternary earthquakes and landslides in the Sea of Galilee area, the Dead Sea Transform: paleoseismic analysis and implication to the current hazard. Israel J Earth Sci 58:275–294

    Article  Google Scholar 

  52. Khesin BE, Alexeyev VV, Eppelbaum LV (1996) Interpretation of geophysical fields in complicated environments. Modern approaches in geophysics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  53. Krijgsman W, Hilgen FG, Langereis CG, Santarelli A, Zachariasse WJ (1995) Late Miocene magnetostratigraphy, biostratigraphy and cyclostratigraphy in the Mediterranean. Earth and Plan Sci Lett 136:475–494

    Article  ADS  CAS  Google Scholar 

  54. Lutzky H, Lyakhovsky V, Kurzon I, Shalev E (2020) Hydrological response to the Sea of Galilee 2018 seismic swarm. J Hydrol 582:1–7

    Article  Google Scholar 

  55. Marco S, Agnon A, Ellenblum R, Eidelman A, Basson U, Boas A (1997) 817 year old walls offset sinistrally 2.1m by the Dead Sea Transform, Israel. J Geodyn 24(1–4):11–20

    Google Scholar 

  56. Marco S, Hartal M, Hazan N, Lev L, Stein M (2003) Archaeology, history, and geology of the A.D. 749 earthquake, Dead Sea transform. Geology 31(8):665–668

    Google Scholar 

  57. Marcus E, Slager J (1985) The sedimentary-magmatic sequence of the Zemah-1 well (Jordan-Dead Sea rift, Israel) and its emplacement in time and space. Israel J Earth Sci 34:1–10

    Google Scholar 

  58. McDougall I, Saemundssion K, Johannesson H, Watkins ND, Kristjansson L (1977) Extension of the geomagnetic polarity time scale to 6.5 m.y.: K-Ar dating, geological and paleomagnetic study of a 3500-m lava succession in western Iceland. Geological Soc Am Bull 88:1–15

    Article  ADS  CAS  Google Scholar 

  59. Mor (1993) A time-table for the Levant Volcanic Province, according to K-Ar dating in the Golan Heights, Israel. J Afr Earth Sci 16(3):223–234

    Google Scholar 

  60. Mor D, Steinitz G (1982) K-Ar age of the cover basalts surrounding the Sea of Galilee. Geol Surv Israel. Rep., Jerusalem, Me/6/82, 14p

    Google Scholar 

  61. Nikitin AA (1993) Statistical processing of geophysical data. Series of advanced geophysics, Russian experience, no 22, Electromagnetic Research Centre, Moscow (in Russian)

    Google Scholar 

  62. Nur A, Helsey CF (1971) Palaeomagnetism of tertiary and recent lavas of Israel. Earth Planet Sci Lett 10:375–379

    Article  ADS  Google Scholar 

  63. Nur A, Ron H, Scott O (1989) Mechanics of distributed fault and block rotation. In: Kissel C, Laj C (eds) Paleomagnetic rotations and continental deformation. NATO ASI Series: mathematical and physical sciences, Kluwer Academy Publishers, Dordrecht, pp 209–228

    Google Scholar 

  64. Reznikov M, Ben-Avraham Z, Garfunkel Z, Gvirtzman H, Roitstein Y (2004) Structural and stratigraphic framework of Lake Kinneret. Israel J Earth Sci 53(3):131–149

    Article  Google Scholar 

  65. Ron H, Freund R, Garfunkel Z, Nur A (1984) Block rotation by strike-slip faulting: structural and paleomagnetic evidence. J Geophys Res 89P:6256–6270

    Article  ADS  Google Scholar 

  66. Rotstein Y, Bartov Y (1989) Seismic reflection across a continental transform: an example from a convergent segment of the Dead Sea rift. J Geophys Res 94:2902–2912

    Article  ADS  Google Scholar 

  67. Rotstein Y, Bartov Y, Freislander U (1992) Evidence for local shifting of the main fault and changes in the structural setting, Kinarot basin, Dead Sea transform. Geology 20:251–254

    Article  ADS  Google Scholar 

  68. Rosenthal M, Ben-Avraham Z, Schattner U (2019) Almost a sharp cut—a case study of the cross point between a continental transform and a rift, based on 3D gravity modeling. Tectonophysics 761:46–64

    Article  ADS  Google Scholar 

  69. Segev A (2017) Zemah-1, a unique deep oil well on the Dead Sea fault zone, northern Israel: a new stratigraphic amendment. Geol Surv Isr. Report GSI/21/2017, Jerusalem, pp 1–27

    Google Scholar 

  70. Serruya C (1971) Lake Kinneret: the nutrient chemistry of sediments. Limn Oceanog 16:510–521

    Article  CAS  Google Scholar 

  71. Shaliv G (1991) Stages in the tectonics and volcanic history of the Neogene basin in the Lower Galilee and the valleys. PhD thesis, Hebrew University, Jerusalem (in Hebrew, summary in English)

    Google Scholar 

  72. Shapira A (1988) Magnitude scales for regional earthquakes monitored in Israel. Israel J Earth Sci 37:17–22

    Google Scholar 

  73. Shapira A, Hofstetter A (1993) Source parameters and scaling relationship of earthquakes in Israel. Tectonophysics 217:217–226

    Article  ADS  Google Scholar 

  74. Sharon M, Sagy A, Kurzon I, Marco S, Rosensaft M (2020) Assessment of seismic sources and capable faults through hierarchic tectonic criteria: implications for seismic hazard in the Levant. Nat Hazards Earth Syst Sci 20:125–148

    Article  ADS  Google Scholar 

  75. Sneh A, Bartov Y, Rozensaft M (1998) Geological map of Israel, scale 1:200,000. Geol Surv Isr

    Google Scholar 

  76. Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67

    Article  ADS  Google Scholar 

  77. Weinstein Y, Navon O, Altherr R, Stein M (2006) The role of lithospheric mantle heterogeneity in the generation of Plio-Pleistocene alkali basalts suites from NW Harrat Ash Shaam (Israel). J Petrol 47(5):1017–1050

    Article  ADS  CAS  Google Scholar 

  78. Zurieli A (2002) Structure and neotectonics in Kinarot Valley based on high-resolution seismic reflection. MSc Thesis, Tel Aviv University (in Hebrew, sum. in English), 92pp

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers, who thoroughly reviewed the manuscript, and their critical comments and valuable suggestions were very helpful in preparing this paper. We are also grateful to the editors of the book, Anna Di Mauro, Francesco Soldovieri, and Andrea Scozzari. for their painstaking work in analyzing the submitted manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Eppelbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eppelbaum, L., Katz, Y., Ben-Avraham, Z. (2022). Advanced Combined Geophysical-Geological Mapping of the Sea of Galilee and Its Vicinity. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_23

Download citation

Publish with us

Policies and ethics