Skip to main content

Multi-geophysical Field Measurements to Characterize Lithological and Hydraulic Properties of a Multi-scale Karstic and Fractured Limestone Vadose Zone: Beauce Aquifer (O-ZNS)

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Part of the book series: Springer Water ((SPWA))

Abstract

The deciphering of the coupled processes that govern the transfers of mass and heat within the vadose zone is recognized as a complex issue. In this context, an observatory of transfers in the vadose zone (O-ZNS) has been implemented near Orléans (France). By combining multiscale laboratory and field experiments using various monitoring techniques, this observatory will improve our knowledge regarding water flow and contaminant transport throughout the 15–19 m highly heterogeneous vadose zone. To image the lithological and hydraulic properties of its heterogeneous facies, we adopted a multi-geophysical monitoring strategy in order to overcome the limitations of each individual geophysical method. This approach includes surface, borehole, and well multi-geophysical measurements. Preliminary investigations undertaken since 2017 leads to an effective and complete characterization of the vadose zone including (i) a lithological description of the geological facies, (ii) the identification of local heterogeneities (karsts, fractures, silicified layers) whose density increases with depth, and (iii) an estimation of the water content variations within the vadose zone. This whole set of results constitutes a first base to ongoing joint inversion that should lead to a refined characterization of the petrophysical and transport properties of the vadose zone column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stephens D (1995) Vadose zone hydrology. CRC press

    Google Scholar 

  2. Arora B, Dwivedi D, Faybishenko B, Jana RB, Wainwright M (2019) Understanding and predicting vadose zone processes. React Transp Nat Eng Syst 85:303–328

    CAS  Google Scholar 

  3. Abbar B, Isch A, Michel K, Vincent H, Abbasimaedeh P, Azaroual M Fiber optic sensors for environmental monitoring: state of the art and application in heterogeneous karstic limestone vadose zone of an agricultural field—Beauce Aquifer (O-ZNS), Orleans, France. Instrum Measure Technol Water Cycle Manage Chapter II.2

    Google Scholar 

  4. Chalikakis K, Plagnes V, Guerin R, Valois R, Bosch F (2011) Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeol J 19(6):1169

    Article  ADS  Google Scholar 

  5. Lamb PB, Londhe DR (2012) Seismic behaviour of soft first storey. IOSR J Mech Civil Eng 2278–1684

    Google Scholar 

  6. Falzone S, Robinson J, Slater L (2019) Characterization and monitoring of porous media with electrical imaging: a review. Transp Porous Media 130(1):251–276

    Article  MathSciNet  Google Scholar 

  7. Legchenko AV, Baltassat J-M, Duwig C, Boucher M, Girard J-F, Soruco A, Beauce A, Mathieu F, Legout C, Descloitres M, Patricia FAG (2020) Time-lapse magnetic resonance sounding measurements for numerical modeling of water flow in variably saturated media. J Appl Geophys 175:103984

    Article  Google Scholar 

  8. Keskinen J, Klotzche A, Looms MC, Moreau J, van der Kruk J, Holliger K, Stemmerik L, Nielsen L (2017) Full-waveform inversion of crosshole GPR data: Implications for porosity estimation in chalk. J Appl Geophys 140:102–116

    Article  Google Scholar 

  9. Champollion C, Deville S, Chéry J, Doerflinger E, Le Moigne N, Bayer R, Vernant P, Mazzilli N (2018) Estimating epikarst water storage by time-lapse surface-to-depth gravity measurements. Hydrol Earth Syst Sci 22(7):3825–3839

    Article  ADS  Google Scholar 

  10. Vozoff K, Jupp DLB (1975) Joint inversion of geophysical data. Geophys J Roy Astron Soc 42:977–991

    Article  Google Scholar 

  11. Linde N, Doetsch J (2016) Joint inversion in hydrogeophysics and near surface geophysics. In: Integrated imaging of the earth: theory and applications. John Wiley & Sons, pp 119–135

    Google Scholar 

  12. Gallardao LA, Fontes SL, Meju MA, Buonora MP, de Lugao PP (2012) Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: example from Santos Basin, offshore Brazil. Geophysics 77(5):B237–B251

    Article  Google Scholar 

  13. Carcione J, Ursin B, Nordskag J (2007) Cross-property relations between electrical conductivity and the seismic velocity of rocks. Geophysics 72(5):193–204

    Article  ADS  Google Scholar 

  14. Davis K, Li Y, Batzle M (2008) Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery. Geophysics 73(6):WA61–WA69

    Google Scholar 

  15. Doetsch J, Krietsch H, Schmelzbach C, Jalali M, Gischig V, Villiger L, Amann F, Maurer H (2020) Characterizing a decametre-scale granitic reservoir using ground-penetrating radar and seismic methods. Solid Earth 11(4):1441–1455

    Article  ADS  Google Scholar 

  16. Lochbühler T, Doetsch J, Brauchler R, Linde N (2013) Structure-coupled joint inversion of geophysical and hydrological data. Geophysics 78(3):ID1–ID14

    Google Scholar 

  17. Cassidy R, Comte J-C, Nitsche J, Wilson C, Flynn R, Ofterdinger U (2014) Combining multi-scale geophysical techniques for robust hydro-structural characterisation in catchments underlain by hard rock in post-glacial regions. J Hydrol 517:715–731

    Article  Google Scholar 

  18. Linde N, Renard P, Mukerji T, Caers J (2015) Geological realism in hydrogeological and geophysical inverse modeling: a review. Adv Water Resour 86:86–101

    Article  ADS  Google Scholar 

  19. Grana D (2018) Joint facies and reservoir properties inversion Dario. Geophysics 83(3):M15–M24

    Article  ADS  Google Scholar 

  20. Linde N, Binley A, Tryggvason A, Pedersen L, Revil A (2006) Improved hydrogeophysical characterization using joint inversion of cross‐hole electrical resistance and ground‐penetrating radar traveltime data. Water Resour Res 42(12)

    Google Scholar 

  21. Shahin A, Myers M, Hathon L (2020) Global optimization to retrieve borehole-derived petrophysical properties of carbonates. Geophysics 85(3):D75–D82

    Google Scholar 

  22. Heincke B, Jegen M, Moorkamp M, Hobbs RW, Chen J (2017) An adaptive coupling strategy for joint inversions that use petrophysical information as constraints. J Appl Geophys 136:279–297

    Article  Google Scholar 

  23. Colombo D, Rovetta D (2018) Coupling strategies in multiparameter geophysical joint inversion. Geophys J Int 215(2):1171–1184

    Article  ADS  Google Scholar 

  24. Miotti F, Zerilli A, Menezes PTL, Crepaldi JLS, Viana AR (2018) A new petrophysical joint inversion workflow: advancing on reservoir’s characterization challenges. Interpretation 6(3):SG33–SG39

    Google Scholar 

  25. Jordi C, Doetsch J, Günther T, Schmelzbach C, Maurer H, Robertsson JOA (2020) Structural joint inversion on irregular meshes. Geophys J Int 220(3):1995–2008

    Article  ADS  Google Scholar 

  26. Monaghan AA, Dochartaigh BO, Fordyce F, Loveless S, Entwisle D, Quinn M, Smith K, Ellen R, Arkley S, Kearsey T, Campbell SDG, Fellgett M, Mosca I (2017) UKGEOS: glasgow geothermal energy research field site (GGERFS): initial summary of the geological platform

    Google Scholar 

  27. Bogena HR, Montzka C, Huisman JA, Graf A, Schmidt M, Stockinger M, Von Hebel C, Hendricks-Franssen HJ, Van Der Kruk J, Tappe W, Lücke A, Baatz R, Bol R, Groh J, Pütz T, Jakobi J, Kunkel R, Sorg J, Vereecken H (2018) The TERENO-Rur hydrological observatory: a multiscale multi-compartment research platform for the advancement of hydrological science. Vadose Zone J 17(1):1–22

    Article  CAS  Google Scholar 

  28. Liu S, Li X, Xu Z, Che T, Xiao Q, Ma M, Qinhuo L, Rui J, Jianwen G, Liangxu W, Weizhen W, Yuan Q, Hongyi L, Tongren X, Youhua R, Xiaoli H, Shengjin S, Zhongli Z, Junlei T, Yang Z, Zhiguo R (2018) The Heihe integrated observatory network: a basin-scale land surface processes observatory in China. Vadose Zone J 17(1):1–21

    Article  Google Scholar 

  29. Bogena HR, White T, Bour O, Li X, Jensen KH (2019) Toward better understanding of terrestrial processes through long-term hydrological observatories. Vadose Zone J 17(1)

    Google Scholar 

  30. Blazevic LA, Bodet L, Pasquet S, Linde N, Jougnot D, Longuevergne L (2020) Time-lapse seismic and electrical monitoring of the vadose zone during a controlled infiltration experiment at the Ploemeur hydrological observatory, France. Water 12(5):1230

    Article  Google Scholar 

  31. Aldana C, Isch A, Bruand A, Azaroual M, Coquet Y (2021) Relationship between hydraulic properties and material features in a heterogeneous vadose zone of a vulnerable limestone aquifer. Vadose Zone J e20127

    Google Scholar 

  32. Ould Mohamed S, Bruand A, Bruckler L, Bertuzzi P, Guillet B, Raison L (1997) Estimating long-term drainage at a regional scale using a deterministic model. Soil Sci Soc Am J 61(5):1473–1482

    Google Scholar 

  33. Isch A, Coquet Y, Abbar B, Aldana C, Abbas M, Bruand A, Azaroual M (2022). A comprehensive experimental and numerical analysis of water flow and travel time in a highly heterogeneous vadose zone. J Hydrol, 610: 127875

    Google Scholar 

  34. Aldana C (2019) Etudes des propriétés de transfert de ka zone non saturée. Application aux calcaires aquitaniens de l'aqiufère de Beauce. PhD thesis, Orleans'University

    Google Scholar 

  35. Mallet C, Fortin J, Guéguen Y, Bouyer F (2013) Effective elastic properties of cracked solids: an experimental investigation. Int J Fract 182(2):275–282

    Article  Google Scholar 

  36. Mallet C, Fortin J, Guéguen Y, Bouyer F (2014) Evolution of the crack network in glass samples submitted to brittle creep conditions. Int J Fract 190(1–2):111–124

    Google Scholar 

  37. Mallet C, Isch A, Azaroual M (2022) Heterogeneity and fracturation characterization of the carbonate O-ZNS site through uniaxial and triaxial tests. Int J Rock Mech Mining Sci, 153:105050

    Google Scholar 

  38. Fan B, Liu X, Zhu Q, Qin G, Li J, Guo L (2020) Exploring the interplay between infiltration dynamics and critical zone structures with multiscale geophysical imaging: a review. Geoderma 374:114431

    Article  ADS  Google Scholar 

  39. Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51(6):3837–3866

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Legchenko AV (2013) Magnetic resonance imaging for groundwater. John Wiley & Sons

    Google Scholar 

  41. Behroozmand A, Keating K, Auken E (2015) A review of the principles and applications of the NMR technique for near-surface characterization. Surv Geophys 36(1):27–85

    Article  ADS  Google Scholar 

  42. Müller-Petke M, Yaramanci U (2008) Resolution studies for magnetic resonance sounding (MRS) using the singular value decomposition. J Appl Geophys 66:165–175

    Article  Google Scholar 

  43. Kremer T, Müller-Petke M, Michel H, Dlugosch R, Irons T, Hermans T, Nguyen F (2020) Improving the accuracy of 1D surface nuclear magnetic resonance surveys using the multi-central-loop configuration. J Appl Geophys 177:104042

    Article  Google Scholar 

  44. Mazzilli N, Boucher M, Chalikakis K, Legchenko AV, Jourde H, Champollion C (2016) Contribution of magnetic resonance soundings for characterizing water storage in the unsaturated zone of karst aquifers. Geophysics 81(4):WB49–WB61

    Google Scholar 

  45. Mazzilli N, Chalikakis K, Carrière SD, Legchenko AV (2020) Surface nuclear magnetic resonance monitoring reveals karst unsaturated zone recharge dynamics during a rain event. Water 12:3183

    Article  Google Scholar 

  46. Gregory A (1976) Fluid saturation effects on dynamic elastic properties of sedimentary rocks. Geophysics 41(5):896–921

    Article  ADS  Google Scholar 

  47. Haeni F (1986) Application of seismic refraction methods in groundwater modeling studies in New England. Geophysics 51(2):236–249

    Article  ADS  Google Scholar 

  48. Pasquet S, Bodet L, Bergamo P, Camerlynck C, Dhemaied A, Flipo N, Guérin R, Rejiba F (2015) Contribution of seismic methods to hydrogeophysics. In: Near surface geoscience 2015–21st European meeting of environmental and engineering geophysics, vol 1, pp 1–5

    Google Scholar 

  49. Révil A, Karaoulis MC, Johnson TC, Kemna A (2012) Review: some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20(4):617–658

    Article  ADS  Google Scholar 

  50. Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156

    Article  Google Scholar 

  51. Catarina P, Alcalá FJ, Carvalho JM, Ribeiro L (2017) Current uses of ground penetrating radar in groundwater-dependent ecosystems research. Sci Total Environ 595:868–885

    Article  ADS  Google Scholar 

  52. Liu X, Chen J, Cui X, Liu Q, Cao X, Chen X (2019) Measurement of soil water content using ground-penetrating radar: a review of current methods. Int J Digital Earth 12(1):95–118

    Article  Google Scholar 

  53. Revil A, Cathles L, Losh S, Nunn J (1998) Electrical conductivity in shaly sands with geophysical applications. J Geophys Res 103(B10):23925–23936

    Article  ADS  Google Scholar 

  54. Jougnot D, Revil A (2010) Thermal conductivity of unsaturated clay-rocks. Hydrol Earth Syst Sci 14:91–98

    Article  ADS  CAS  Google Scholar 

  55. Michot D, Benderiter Y, Dorigny A, Nicoullaud B, King D, Tabbagh A (2003) Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water resource Research 39(5)

    Google Scholar 

  56. Watlet A, Kaufmann O, Triantafyllou A, Poulain A, Chambers JE, Ledrum PI, Wilkinson PB, Hallet V, Quinif Y, Van Ruymbeke M, Van Camp M (2018) Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring. Hydrol Earth Syst Sci 22:1563–1592

    Article  ADS  Google Scholar 

  57. Leroy P, Li S, Jougnot D, Revil A, Wu Y (2017) Modeling the evolution of complex conductivity during calcite precipitation on glass beads. Geophys J Int 209(1):123–140

    ADS  CAS  Google Scholar 

  58. Deparis J, Fricout B, Jongmans D, Villemin T, Effendiantz L, Mathy A (2008) Combined use of geophysical methods and remote techniques for characterizing the fracture network of a potentially unstable cliff site (the “Roche du Midi”, Vecors massif, France). J Geophys Eng 5(2):147–157

    Article  Google Scholar 

  59. Carrière SD, Chalikakis K, Sénéchal G, Danquigny C, Emblanch C (2013) Combining electrical resistivity tomography and ground penetrating radar to study geological structuring of karst unsaturated zone. J Appl Geophys 94:31–41

    Article  Google Scholar 

  60. Girard J-F, Jodry C, Matthey P-D (2019) On-site characterization of the spatio-temporal structure of the noise for MRS measurements using a pair of eight-shape loops. J Appl Geophys 178:104075

    Article  Google Scholar 

  61. Lubczynski M, Roy J (2004) Magnetic resonance sounding: new method for ground water assessment. Groundwater 42(2):291–303

    Article  CAS  Google Scholar 

  62. Schuster GT, Quintus-Bosz A (1993) Wavepath eikonal traveltime inversion: theory. Geophysics 58(9):1314–1323

    Article  ADS  Google Scholar 

  63. Rohdewald SR (2011) Interpretation of first-arrival travel times with wavepath eikonal traveltime inversion and wavefront refraction method. In: Symposium on the application of geophysics to engineering and environmental problems, pp 31–38

    Google Scholar 

  64. Lin FC, Ritzwoller MH, Snieder R (2009) Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophys J Int 177(3):1091–1110

    Article  ADS  Google Scholar 

  65. Hubral P, Tygel M, Schleicher J (1996) Seismic image waves. Geophys J Int 125(2):431–442

    Article  ADS  Google Scholar 

  66. Team GD (2020) pyGIMLi tutorials. https://www.pygimli.org/_tutorials_auto/index.html. Accessed 2020

  67. Giroux B, Gloaguen E, Chouteau M (2007) bh_tomo—a matlab borehole georadar 2D tomography package. Comput Geosci 33(1):126–137

    Article  ADS  Google Scholar 

  68. Jodry C, Jouen T, Isch A, Baltassat J-M, Deparis J, Laurent G, Mallet C, Azaroual M (2019) Geophysical imaging for the petrophysical properties characterization of a limestone heterogeneous vadose zone—beauce aquifer (france). In: AGU Fall Meeting, San Fransisco, USA, Dec 2019

    Google Scholar 

  69. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge university press

    Google Scholar 

  70. Šimůnek J, van Genuchten MT, Šejna M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J 7(15):25

    Google Scholar 

  71. van Genuchten M, Leif F, Yates S (1991) The RETC code for quantifying hydraulic functions of unsaturated soils. USEPA, Washington, DC

    Google Scholar 

  72. van Genuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  73. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    Article  ADS  Google Scholar 

  74. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62

    Article  Google Scholar 

  75. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16(3):574–582

    Article  ADS  Google Scholar 

  76. Glover PWJ (2011) Geophysical properties of the near surface Earth: electrical properties. Treatise Geophys 11:89–137

    Google Scholar 

Download references

Acknowledgements

This research work was conducted within the framework of the O-ZNS project which is part of PIVOTS project. We gratefully acknowledge the financial support provided by the Région Centre-Val de Loire (ARD 2020 program and CPER 2015 -2020) and the French Ministry of Higher Education and Research (CPER 2015–2020 and public service to BRGM). This is also co-funded by European Union with the European Regional Development Fund (FEDER). Finally, this research work is co-funded by the Labex VOLTAIRE (ANR-10-LABX-100-01).

Authors are also thankful for the help of K. Moreau and B. Brigaud from Université Paris Saclay, S. Andrieu and E. Husson from the BRGM for the characterization of rock facies, L. Bodet, R. Guérin and CRITEX for the seismic acquisition, A. Bitri from the BRGM for the seismic inversion, J.-M. Baltassat and S. Ammor from the BRGM for the NMR acquisition and inversion, T. Jouen (ISTO) and J.-C. Gourry (BRGM) for the ERT acquisition and inversion, SEMM Logging for the geophysical logs, IRIS Instrument, Geosciences Montpellier and NMR Services Australia for the equipment loan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Mallet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallet, C., Jodry, C., Isch, A., Laurent, G., Deparis, J., Azaroual, M. (2022). Multi-geophysical Field Measurements to Characterize Lithological and Hydraulic Properties of a Multi-scale Karstic and Fractured Limestone Vadose Zone: Beauce Aquifer (O-ZNS). In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_19

Download citation

Publish with us

Policies and ethics