Skip to main content

Direct Current Electrical Methods for Hydrogeological Purposes

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Part of the book series: Springer Water ((SPWA))

Abstract

The climate change has dramatically decreased the useful freshwater resources so raising the probability of severe droughts. Near-surface geophysics uses the investigational methods of geophysics leading to their massive use in all scientific sectors (geology, hydrogeology, engineering, archaeology, environmental problems). Moreover, the increasing challenge of quantifying extractable, economically viable, potable water supplies has led to the definition of a new subdiscipline of hydrology known as hydrogeophysics. Direct current (DC) electrical methods are probably the most widely used near surface geophysical techniques for environmental investigations. DC methods are increasingly used in different approaches to cover a larger field of applications. In hydrogeological applications, the electrical resistivity distribution can provide important information that allows to characterize the heterogeneity of the aquifers and soil, to reconstruct the geometry of the aquifers and/or waterproof, to study the relationships between freshwater and seawater, or from groundwater different salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62

    Article  Google Scholar 

  2. Archie GE (1952) Classification of carbonate reservoir rocks and petro-physical considerations. AAPG Bull 36(2):278–298

    CAS  Google Scholar 

  3. Atekwana EA, Atekwana EA (2010) Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv Geophys 31(2):247–283

    Article  ADS  Google Scholar 

  4. Ayolabi EA, Folorunso AF, Idem SS (2012) Application of electrical resistivity tomography in mapping subsurface hydrocarbon contamination. Earth Sci Res 2:93–103

    Article  Google Scholar 

  5. Balasco M, Galli P, Giocoli A, Gueguen E, Lapenna V, Perrone A, Piscitelli S, Rizzo E, Romano G, Siniscalchi A et al (2011) Deep geophysical electromagnetic section across the Middle Aterno Valley (Central Italy): preliminary results after the April 6, 2009 L’Aquila earthquake. Boll di Geofis Teorica ed Appl 52(3):443–455

    Google Scholar 

  6. Beasley C, Ward S (1986) Three-dimensional mise-a`-la-masse modeling applied to mapping fracture zones. Geophysics 51(1):98–113

    Article  ADS  Google Scholar 

  7. Benson AK, Payne KL, Stubben MA (1997) Mapping groundwater contamination using DC resistivity and VLF geophysical methods—a case study. Geophysics 62:80–86

    Article  ADS  Google Scholar 

  8. Bevc D, Morrison HF (1991) Borehole-to-surface electrical resistivity monitoring of a salt water injection experiment. Geophysics 56(6):769–777

    Article  ADS  Google Scholar 

  9. Bhattacharya B, Gupta D, Banerjee B, Shalivahan (2001) Mise-a-la-masse survey for an auriferous sulfide deposit. Geophysics 66(1):70–77

    Google Scholar 

  10. Binley A (2007) R2: summary. Lancaster University, Lancaster, UK

    Google Scholar 

  11. Binley A (2015) Tools and techniques: electrical methods. In: Schubert G (ed) Treatise on geophysics. Elsevier, pp 233–259 (11.08.2015).

    Google Scholar 

  12. Binley A, Cassiani G, Deiana R (2010) Hydrogeophysics: opportunities and challenges. Boll di Geofis Teorica ed Appl 51(4):267–284

    Google Scholar 

  13. Binley A, Cassiani G, Middleton R, Winship P (2002) Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. J Hydrol 267:147–159

    Article  Google Scholar 

  14. Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51:3837–3866

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Binley A, Kemna A (2005) Electrical methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, pp. 129–156

    Google Scholar 

  16. Binley A, Slater L (2020) Resistivity and induced polarization. Theory and applications to the near-surface. Cambridge University Press

    Google Scholar 

  17. Cardarelli E, De Donno G (2019) Advances in electric resistivity tomography: theory and case studies. In: Persico R, Piro S, Linford N (eds) Innovation in near-surface geophysics. Elsevier, pp 23–57

    Google Scholar 

  18. Caselle C, Bonetto S, Comina C (2019) Comparison of laboratory and field electrical resistivity measurements of a gypsum rock for mining prospection applications. Int J Min Sci Technol 29(6):841–849

    Article  Google Scholar 

  19. Chambers JE, Wilkinson PB, Weller AL, Meldrum PI, Ogilvy RD, Caunt S (2007) Mineshaft imaging using surface and crosshole 3D electrical resistivity tomography: a case history from the East Pennine Coalfield, UK. J Appl Geophys 62:324–337

    Article  Google Scholar 

  20. Cheng Q, Chen X, Tao M, Binley A (2019) Characterization of karst structures using quasi-3D electrical resistivity tomography. Environ Earth Sci 78:285

    Article  Google Scholar 

  21. Christensen CW, Hayashi M, Bentley LR (2020) Hydrogeological characterization of an alpine aquifer system in the Canadian Rocky Mountains. Hydrogeol J 28:1871–1890

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clément R, Moreau S, Henine H, Guérin A, Chaumont C, Tournebize J (2014) On the value of combining surface and cross-borehole ERT measurements to study artificial tile drainage processes. Near Surf Geophys 12:763–775

    Article  Google Scholar 

  23. Colella A, Lapenna V, Rizzo E (2004) High-resolution imaging of the High Agri Valley basin (Southern Italy) with electrical resistivity tomography. Tectonophysics 386(1–2):29–40

    Article  ADS  Google Scholar 

  24. Cozzolino M, Caliò LM, Gentile V, Mauriello P, Di Meo A (2020) The discovery of the theater of Akragas (Valley of Temples, Agrigento, Italy): an archaeological confirmation of the supposed buried structures from a geophysical survey. Geosciences 10:161

    Article  ADS  Google Scholar 

  25. Dam D, Christensen S (2003) Including geophysical data in groundwater model inverse calibration. Ground Water 41:178–189

    Article  CAS  PubMed  Google Scholar 

  26. Daily W, Ramirez A (2000) Electrical imaging of engineered hydraulic barriers. Geophysics 65:83–94

    Article  ADS  Google Scholar 

  27. Daily W, Ramirez A, Labrecque D, Nitao J (1992) Electrical-resistivity tomography of vadose water-movement. Water Resour Res 28:1429–1442

    Article  ADS  Google Scholar 

  28. Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52:379–398

    Article  ADS  Google Scholar 

  29. Danielsen BE, Dahlin T (2010) Numerical modelling of resolution and sensitivity of ERT in horizontal boreholes. J Appl Geophys 70(3):245–254

    Article  Google Scholar 

  30. De Martino G, Capozzoli L, Giampaolo V, Rizzo E (2020) Geophysical measurements in an abandoned old railway tunnel (Marsico Nuovo, Italy). EGU2020-7448. https://doi.org/10.5194/egusphere-egu2020-7448

  31. de Groot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55:1613–1624

    Article  Google Scholar 

  32. Dey A, Morrison HF (1979) Resistivity modelling for arbitrarily shaped two dimensional structures. Geophys Prosp 27:106–136

    Article  ADS  Google Scholar 

  33. Dey A, Morrison HF (1979) Resistivity modelling for arbitrarily shaped three dimensional structures. Geophysics 44:753–780

    Article  ADS  Google Scholar 

  34. Folch A, del Val L, Luquot L, Martínez-Pérez L, Bellmunt F, Le Lay H, Rodellas V, Ferrer N, Palacios A, Fernández S, Marazuela MA, Diego-Feliu M, Pool M, Goyetche T, Ledo J, Pezard P, Bour O, Queralt P, Marcuello A, Garcia-Orellana J, Saaltink MW, Vázquez-Suñé E, Carrera J (2020) Combining fiber optic DTS, cross-hole ERT and time-lapse induction logging to characterize and monitor a coastal aquifer. J Hydrol 588:125050

    Article  Google Scholar 

  35. Friedel S (2003) Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach. Geophys J Int 153(2):305–316

    Article  ADS  Google Scholar 

  36. Giampaolo V, Capozzoli L, Grimaldi S, Rizzo E (2016) Sinkhole risk assessment by ERT: the case study of Sirino Lake (Basilicata, Italy). Geomorphology 253:1–9

    Article  ADS  Google Scholar 

  37. Giampaolo V, Rizzo E, Straface S, Votta M (2011) Hydrogeophysics techniques for the characterization of a heterogeneous aquifer. Boll di Geofis Teorica ed Appl 52(4):595–606

    Google Scholar 

  38. Giocoli A, Magrì C, Piscitelli S, Rizzo E, Siniscalchi A, Burrato P, Vannoli P, Basso C, Di Nocera S (2008) Electrical resistivity tomography investigations in the Ufita Valley (Southern Italy). Ann Geophys 51:213–223

    Article  Google Scholar 

  39. Glover P (2009) What is the cementation exponent? A new interpretation. Lead Edge 28(1):82–85

    Article  Google Scholar 

  40. Glover PWJ (2015) Geophysical properties of the near surface earth: electrical properties. In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elsevier, pp 89–137 (11.04.2015)

    Google Scholar 

  41. Goes BJM, Meekes JAC (2004) An effective electrode configuration for the detection of DNAPLs with electrical resistivity tomography. J Environ Eng Geophys 9:127–141

    Article  Google Scholar 

  42. Guerriero M, Capozzoli L, De Martino G, Giampaolo V, Rizzo E, Canora F, Sdao F (2019) Geophysical techniques for monitoring carbonate karstic rocks. Ital J Eng Geol Environ. https://doi.org/10.4408/IJEGE.2019-01.S-10 Project: Landslide Risk Assessment along roads (LaRIS), Special Issue 1 (2019) Sapienza Università Editrice

    Article  Google Scholar 

  43. Hallof PG (1957) On the interpretation of resistivity and induced polarization measurements, Ph.D. thesis, MIT, Cambridge

    Google Scholar 

  44. Hung Y-C, Lin C-P, Lee C-T, Weng K-W (2019) 3D and boundary effects on 2D electrical resistivity tomography. Appl Sci 2019(9):2963

    Article  Google Scholar 

  45. Irving J, Singha K (2010) Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities. Water Resour Res 46:W11514

    Article  ADS  Google Scholar 

  46. Kelly WE (1976) Geoelectric sounding for delineating ground-water contamination. Groundwater 14(1):6–10

    Article  Google Scholar 

  47. Kirkby A, Heinson G, Krieger L (2016) Relating permeability and electrical resistivity in fractures using random resistor network models. J Geophys Res Solid Earth 121(3):1546–1564

    Article  ADS  Google Scholar 

  48. Kosinski WK, Kelly EW (1981) Geoelectric sounding for predicting aquifer properties. Ground Water 19:163–171

    Article  Google Scholar 

  49. Kozeny J (1953) Hydraulik. Springer, Wien, p 588

    Book  Google Scholar 

  50. Kozlov B, Schneider MH, Montaron B, Lagues M, Tabeling P (2012) Archie’s law in microsystems. Transp Porous Media 95(1):1–20

    Article  CAS  Google Scholar 

  51. Kruschwitz S, Yaramanci U (2004) Detection and characterisation of the disturbed rock zone in claystone with the complex resistivity method. J Appl Geophys 57:63–79

    Article  Google Scholar 

  52. Kunetz G (1966) Principles of direct current resistivity prospecting. In: Geoexploration monographs, series 1, no 1. Schweizerbart Science Publishers, Stuttgart, Germany, 103 p

    Google Scholar 

  53. Lall U, Josset L, Russo T (2020) A snapshot of the world’s groundwater challenges. Annu Rev Environ Resour 45:7.1–7.24

    Google Scholar 

  54. Loke M, Barker R (1996) Rapid least-squares inversion of apparent resistivity pseudosection by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  ADS  Google Scholar 

  55. Lytle RJ, Dines KA (1978) An impedance camera: a system for determining the spatial variation of electrical conductivity. Lawrence Livermore National Laboratory UCRL-52413

    Google Scholar 

  56. Mansinha L, Mwenifumbo C (1983) A mise-a`-la-masse study of the Cavendish geophysical test site. Geophysics 48(9):1252–1257

    Article  ADS  Google Scholar 

  57. Marescot L, Palma Lopes S, Lagabrielle R, Chapellier D (2002) Designing surface to borehole electrical resistivity tomography surveys using the Frechet derivative. In: Proceedings of 8th meeting of the environmental and engineering geophysical society—European section, pp 289–292

    Google Scholar 

  58. Mary B, Peruzzo L, Boaga J, Cenni N, Schmutz M, Wu Y, Hubbard SS, Cassiani G (2020) Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment. Soil 6(95–114):2020

    Google Scholar 

  59. Mohamed A, Paleologos E (2017) Groundwater. In: Fundamentals of geoenvironmental engineering: understanding soil, water, and pollutant interaction and transport. Butterworth-Heinemann

    Google Scholar 

  60. Ogunbo JN, Mamukuyomi EA, Wahab SA, Harrison A, Olamide A, Chukwuebuka RU (2018) Panoramic azimuthal Schlumberger vertical electrical sounding for fracture orientation and anisotropy quantification. Heliyon 4(12):e00998

    Article  PubMed  PubMed Central  Google Scholar 

  61. Palacios A, Ledo JJ, Linde N, Luquot L, Bellmunt F, Folch A, Marcuello A, Queralt P, Pezard PA, Martínez L, del Val L, Bosch D, Carrera J (2020) Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer. Hydrol Earth Syst Sci 24:2121–2139

    Article  ADS  Google Scholar 

  62. Perri MT, Barone I, Cassiani G, Deiana R, Binley A (2020) Borehole effect causing artefacts in cross-borehole electrical resistivity tomography: a hydraulic fracturing case study. Near Surf Geophys 18(4):445–462

    Article  Google Scholar 

  63. Perri MT, De Vita P, Masciale R, Portoghese I, Chirico GB, Cassiani G (2018) Time-lapse mise-á-la-masse measurements and modeling for tracer test monitoring in a shallow aquifer. J Hydrol 561:461–477

    Article  Google Scholar 

  64. Pucci S, Civico R, Villani F, Ricci T, Delcher E, Finizola A, Sapia V, De Martini PM, Pantosti D, Barde-Cabusson S et al (2016) Deep electrical resistivity tomography along the tectonically active Middle Aterno Valley (2009 L’Aquila earthquake area, central Italy). Geophys J Int 207(2):967–982

    Article  ADS  Google Scholar 

  65. Ramirez A, Daily W, Binley A, LaBrecque D, Roelant D (1996) Detection of leaks in underground storage tanks using electrical resistance methods. J Environ Eng Geophys 1:189–203

    Article  Google Scholar 

  66. Riedel M, Collett TS, Hyndman RD (2005) Gas hydrate concentration estimates from chlorinity, electrical resistivity, and seismic velocity. Geol Surv Can Open-File Rep 4934

    Google Scholar 

  67. Rizzo E, Colella A, Lapenna V, Piscitelli S (2004) High-resolution images of the fault controlled High Agri Valley basin (Southern Italy) with deep and shallow electrical resistivity tomographies. Phys Chem Earth 29:321–327

    Article  ADS  Google Scholar 

  68. Rizzo E, Giampaolo V (2019) New deep electrical resistivity tomography in the High Agri Valley basin (Basilicata, Southern Italy). Geomat Nat Haz Risk 10(1):197–218

    Article  Google Scholar 

  69. Rizzo E, Giampaolo V, Capozzoli L, Grimaldi S (2019) Deep electrical resistivity tomography for the hydrogeological setting of Muro Lucano Mounts Aquifer (Basilicata, Southern Italy). Geofluids 2019b(Article ID 6594983): 11 p

    Google Scholar 

  70. Rizzo E, Guerriero M, Gueguen E, Capozzoli L, De Martino G, Perciante F (2017) Cave-surface electrical resistivity tomography in “Castello di Lepre” karst system (Marsico Nuovo, Southern Italy). In: Monitoring and characterization of the shallow subsurface I, EAGE 2017. https://doi.org/10.3997/2214-4609.201702078

  71. Rizzo E, Suski B, Revil A, Straface S, Troisi S (2004) Self-potential signals associated with pumping-test experiments. J Geophys Res 109:1–14

    Google Scholar 

  72. Roubinet D, Irving J, Pezard P (2018) Relating topological and electrical properties of fractured porous media: insights into the characterization of rock fracturing. Minerals 8(1):1–14

    Article  CAS  Google Scholar 

  73. Rubin Y, Hubbard SS (2005) Hydrogeophysics, 523 pp. Springer, NY

    Google Scholar 

  74. Rücker C, Günther T (2011) The simulation of finite ERT electrodes using the complete electrode model. Geophysics 76:F227–F238

    Article  Google Scholar 

  75. Santilano A, Godio A, Manzella A, Menghini A, Rizzo E, Romano G (2015) Electromagnetic and DC methods for geothermal exploration in Italy, state-of-the-art, case studies and future developments. First Break 33(8):81–86

    Article  Google Scholar 

  76. Sasaki Y, Matsuo K (1993) Surface-to-tunnel resistivity tomography at the Kamaishi mine. Batsuri-Tansa 46:128–133

    Google Scholar 

  77. Shevnin V, Delgado-Rodríguez O, Mousatov A, Ryjov A (2006) Estimation of hydraulic conductivity on clay content in soil determined from resistivity data. Geofís Internacional 45:195–207

    Article  CAS  Google Scholar 

  78. Shima H (1992) 2D and 3D resistivity image reconstruction using crosshole data. Geophysics 57:1270–1281

    Article  ADS  Google Scholar 

  79. Schön JH (2004) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Amsterdam, 600 pp

    Google Scholar 

  80. Slater L, Binley A (2003) Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods. Geophysics 68:911–921

    Article  ADS  Google Scholar 

  81. Slater LD, Binley A, Brown D (1997) Electrical imaging of fractures using groundwater salinity change. Ground Water 35:436–442

    Article  CAS  Google Scholar 

  82. Tamburriello G, Balasco M, Rizzo E, Harabaglia P, Lapenna V, Siniscalchi A (2008) Deep electrical resistivity tomography and geothermal analysis of Bradano foredeep deposits in Venosa area (Southern Italy): preliminary results. Ann Geophys 51(1)

    Google Scholar 

  83. Troiano A, Isaia R, Di Giuseppe MG, Tramparulo FDA, Vitale S (2019) Deep electrical resistivity tomography for a 3D picture of the most active sector of Campi Flegrei caldera. Sci Rep 9:15124

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Troisi S, Fallico C, Straface S, Migliari E (2000) Application of kriging with external drift to estimate hydraulic conductivity from electrical resistivity data in unconsolidated deposits near Montalto Uffugo, Italy. Hydrogeol J 4:356–367

    Article  ADS  Google Scholar 

  85. Tschofen (2014) Geoelectrical monitoring of rock permafrost in the laboratory, thesis

    Google Scholar 

  86. Tso CM, Johnson TC, Song X, Chen X, Kuras O, Wilkinson P, Uhlemann S, Chambers J, Binley A (2020) Integrated hydrogeophysical modelling and data assimilation for geoelectrical leak detection. J Contam Hydrol 234:103679

    Article  CAS  PubMed  Google Scholar 

  87. Tsourlos P, Ogilvy RD, Papazachos C, Meldrum PI (2011) Measurement and inversion schemes for single borehole-to-surface electrical resistivity tomography surveys. J Geophys Eng 8:487–497

    Article  Google Scholar 

  88. Tucker SE, Briaud J, Hurlebaus S, Everett ME, Arjwech R (2015) Electrical resistivity and induced polarization imaging for unknown bridge foundations. J Geotech Geoenviron Eng 141(5):04015008

    Article  Google Scholar 

  89. Van Schoor M, Binley A (2010) In-mine (tunnel-to-tunnel) electrical resistance tomography in South African platinum mines. Near Surface Geophys 8:563–574

    Article  Google Scholar 

  90. Vogelgesang JA, Holt N, Schilling KE, Gannon M, Tassier-Surine S (2020) Using high-resolution electrical resistivity to estimate hydraulic conductivity and improve characterization of alluvial aquifers. J Hydrol 580:123992

    Article  Google Scholar 

  91. Watlet A, Kaufmann O, Triantafyllou A, Poulain A, Chambers JE, Meldrum PI, Wilkinson PB, Hallet V, Quinif Y, Van Ruymbeke M, Van Camp M (2018) Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring. Hydrol Earth Syst Sci 22:1563–1592

    Article  ADS  Google Scholar 

  92. Waxman MH, Smits LJM (1968) Electrical conductivities in oil-bearing Shaly sands. Soc Petrol Eng J 8:107–122

    Article  Google Scholar 

  93. Wilkinson PB, Chambers JE, Lelliott M, Wealthall GP, Ogilvy RD (2008) Extreme sensitivity of crosshole electrical resistivity tomography measurements to geometric errors. Geophys J Int 173(1):49–62

    Article  ADS  Google Scholar 

  94. Wilkinson PB, Chambers JE, Meldrum PI, Ogilvy RD, Caunt S (2006) Optimization of array configurations and panel combinations for the detection and imaging of abandoned mineshafts using 3D cross-hole electrical resistivity tomography. J Environ Eng Geophys 11:213–221

    Article  Google Scholar 

  95. Wu W, Lo M, Wada Y, Famiglietti JS, Reager JT, Yeh PJ-F, Ducharne A, Yang Z (2020) Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat Commun 11:3710

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yue WZ, Tao G (2013) A new non-Archie model for pore structure: numerical experiments using digital rock models. Geophys J Int 195(1):282–291

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizzo, E., Giampaolo, V. (2022). Direct Current Electrical Methods for Hydrogeological Purposes. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_16

Download citation

Publish with us

Policies and ethics