Skip to main content

Plants, Vital Players in the Terrestrial Water Cycle

  • Chapter
  • First Online:
Instrumentation and Measurement Technologies for Water Cycle Management

Abstract

Plant transpiration accounts for about half of all terrestrial evaporation. Plants need water for many vital functions including nutrient uptake, growth and leaf cooling. The regulation of plant water transport by stomata in the leaves leads to the loss of 97% of the water that is taken up via their roots, to the atmosphere. Measuring plant-water dynamics is essential to gain better insight into its roles in the terrestrial water cycle and plant productivity. It can be measured at different levels of integration, from the single cell micro-scale to the ecosystem macro-scale, on time scales from minutes to months. In this contribution, we give an overview of state-of-the-art techniques for plant-water dynamics measurement and highlight several promising innovations for future monitoring. Some of the techniques we will cover include: gas exchange for stomatal conductance and transpiration monitoring, lysimetry, thermometry, heat-based sap flow monitoring, reflectance monitoring including satellite remote sensing, ultrasound spectroscopy, dendrometry, accelometry, scintillometry, stable water isotope analysis and eddy covariance. To fully assess water transport within the soil-plant-atmosphere continuum, a variety of techniques are required to monitor environmental variables in combination with biological responses at different scales. Yet this is not sufficient: to truly account for spatial heterogeneity, a dense network sampling is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Falkenmark M, Rockstrom J, Rockström J (2004) Balancing water for humans and nature: the new approach in ecohydrology. Earthscan

    Google Scholar 

  2. Rosa L, Rulli MC, Davis KF, Chiarelli DD, Passera C, D’Odorico P (2018) Closing the yield gap while ensuring water sustainability. Environ Res Lett 13(10):104002

    Google Scholar 

  3. Patrick E (2017) Drought characterization and management in central Asia region and turkey. Technical report

    Google Scholar 

  4. Stoy PC, El-Madany TS, Fisher JB, Gentine P, Gerken T, Good SP, Klosterhalfen A, Liu S, Miralles DG, Perez-Priego O et al (2019) Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16(19):3747–3775

    Google Scholar 

  5. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision

    Google Scholar 

  6. Rana M, Mark T (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Google Scholar 

  7. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428(6985):851–854

    Google Scholar 

  8. Buitink J, Swank AM, van der Ploeg M, Smith NE, Benninga HJF, van der Bolt F, Carranza CDU, Koren G, van der Velde R, Teuling AJ (2020) Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices. Hydrol Earth Syst Sci 24(12):6021–6031

    Google Scholar 

  9. van der Ploeg MJ, Gooren HPA, Bakker G, de Rooij GH (2008) Matric potential measurements by polymer tensiometers in cropped lysimeters under water-stressed conditions. Vadose Zone J 7(3):1048–1054

    Google Scholar 

  10. Tracy L, Jack M (2020) Guard cell metabolism and stomatal function. Ann Rev Plant Biol 71:273–302

    Google Scholar 

  11. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424(6951):901–908

    Google Scholar 

  12. Ainsworth EA, Long SP (2021) 30 years of free-air carbon dioxide enrichment (face): what have we learned about future crop productivity and its potential for adaptation? Global Change Biol 27(1):27–49

    Google Scholar 

  13. Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration scaling up from leaf to region. Adv Ecol Res 15:1–49

    Google Scholar 

  14. Jarvis PG (1995) Scaling processes and problems. Plant Cell Environ 18(10):1079–1089

    Article  Google Scholar 

  15. Brown HT, Escombe F (1900) Viii. static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Philos Trans Royal Soc Londn Ser B, Containing Pap Biol Character 193(185–193):223–291

    Google Scholar 

  16. Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by co2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci 106(25):10343–10347

    Google Scholar 

  17. Franks PJ, Farquhar GD (2001) The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in tradescantia virginiana. Plant Physiol 125(2):935–942

    Google Scholar 

  18. Peter L, Dani O (2015) Effects of stomata clustering on leaf gas exchange. New Phytologist 207(4):1015–1025

    Google Scholar 

  19. Long SP, Farage PK, Garcia RL (1996) Measurement of leaf and canopy photosynthetic co2 exchange in the field. J Experimental Botany 47(11):1629–1642

    Google Scholar 

  20. Song Q, Xiao H, Xiao X, Zhu X-G (2016) A new canopy photosynthesis and transpiration measurement system (capts) for canopy gas exchange research. Agric Forest Meteorol 217:101–107

    Google Scholar 

  21. Hemakumara HM, Chandrapala L, Moene AF (2003) Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agric Water Manage 58(2):109–122

    Google Scholar 

  22. Meijninger WML, De Bruin HAR (2000) The sensible heat fluxes over irrigated areas in western turkey determined with a large aperture scintillometer. J Hydrol 229(1–2):42–49

    Google Scholar 

  23. Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol 58(4):367–389

    Article  ADS  Google Scholar 

  24. Van Kesteren B, Hartogensis OK, Van Dinther D, Moene AF, De Bruin HAR (2013) Measuring H2O and CO2 fluxes at field scales with scintillometry: part i-introduction and validation of four methods. Agric Forest Meteorol 178:75–87

    Google Scholar 

  25. Moorhead JE, Marek GW, Colaizzi PD, Gowda PH, Evett SR, Brauer DK, Marek TH, Porter DO (2017) Evaluation of sensible heat flux and evapotranspiration estimates using a surface layer scintillometer and a large weighing lysimeter. Sensors 17(10):2350

    Google Scholar 

  26. Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer Science & Business Media

    Google Scholar 

  27. Whitehead JD, Twigg M, Famulari D, Nemitz E, Sutton MA, Gallagher MW, Fowler D (2008) Evaluation of laser absorption spectroscopic techniques for eddy covariance flux measurements of ammonia. Environ Sci Technol 42(6):2041–2046

    Google Scholar 

  28. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9(4):479–492

    Google Scholar 

  29. Gilberto P, Carlo T, Eleonora C, Housen C, Danielle C, You-Wei C, Cristina P, Jiquan C, Abdelrahman E, Marty H et al (2020) The fluxnet2015 dataset and the oneflux processing pipeline for eddy covariance data. Sci Data 7(1):1–27

    Google Scholar 

  30. Prashar A, Jones HG (2014) Infra-red thermography as a high-throughput tool for field phenotyping. Agronomy 4(3):397–417

    Google Scholar 

  31. Silvere V-C, Tracy L (2019) Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment. J Experimental Botany 70(10):2839–2855

    Google Scholar 

  32. Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (sebal). 1. formulation. J Hydrol 212:198–212

    Google Scholar 

  33. Sajad J, Shahrokh Z-P, Dev N (2021) Assessing crop water stress index of citrus using in-situ measurements, landsat, and sentinel-2 data. Int J Remote Sensing 42(5):1893–1916

    Google Scholar 

  34. Jamshidi S, Zand-Parsa S, Jahromi MN, Niyogi D (2019) Application of a simple landsat-modis fusion model to estimate evapotranspiration over a heterogeneous sparse vegetation region. Remote Sensing 11(7):741

    Google Scholar 

  35. Gausman HW, Allen WA, Cardenas R, Richardson AJ (1970) Relation of light reflectance to histological and physical evaluations of cotton leaf maturity. Appl Optics 9(3):545–552

    Google Scholar 

  36. Lois G (1987) Diffuse and specular characteristics of leaf reflectance. Remote Sensing Environ 22(2):309–322

    Google Scholar 

  37. Knipling EB (1970) Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing Environ 1(3):155–159

    Google Scholar 

  38. Slaton MR, Hunt Jr ER, Smith WK (2001) Estimating near-infrared leaf reflectance from leaf structural characteristics. Am J Botany 88(2):278–284

    Google Scholar 

  39. Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Optics 4(1):11–20

    Google Scholar 

  40. Croft H, Chen JM (2017) Leaf pigment content. In: Reference module in earth systems and environmental sciences. Elsevier Inc, Oxford, pp 1–22

    Google Scholar 

  41. Hunt Jr ER, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sensing Environ 30(1):43–54

    Google Scholar 

  42. Hunt Jr ER, Rock BN, Nobel PS (1987) Measurement of leaf relative water content by infrared reflectance. Remote Sensing Environ 22(3):429–435

    Google Scholar 

  43. Hardisky MA, Klemas V, Smart M (1983) The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of spartina alterniflora canopies. Photogramm Eng Remote Sensing 49:77–83

    Google Scholar 

  44. Yilmaz MT, Hunt Jr ER, Goins LD, Ustin SL, Vanderbilt VC, Jackson TJ (2008) Vegetation water content during smex04 from ground data and landsat 5 thematic mapper imagery. Remote Sensing Environ 112(2):350–362

    Google Scholar 

  45. van Dijke AJH, Mallick K, Teuling AJ, Schlerf M, Machwitz M, Hassler SK, Blume T, Herold M (2019) Does the normalized difference vegetation index explain spatial and temporal variability in sap velocity in temperate forest ecosystems? Hydrol Earth Syst Sci 23:2077–2091

    Google Scholar 

  46. Abid N, Bargaoui Z, Mannaerts CM (2018) Remote-sensing estimation of the water stress coefficient and comparison with drought evidence. Int J Remote Sensing 39(14):4616–4639

    Google Scholar 

  47. van Emmerik T, Steele-Dunne S, Judge J, van de Giesen N (2015) A comparison between leaf dielectric properties of stressed and unstressed tomato plants. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 275–278

    Google Scholar 

  48. Van Emmerik T, Steele-Dunne SC, Judge J, Van De Giesen N (2016) Dielectric response of corn leaves to water stress. IEEE Geosci Remote Sensing Lett 14(1):8–12

    Google Scholar 

  49. van Emmerik T, Steele-Dunne S, Paget A, Oliveira RS, Bittencourt PRL, de Barros FV, van de Giesen N (2017) Water stress detection in the amazon using radar. Geophys Res Lett 44(13):6841–6849

    Google Scholar 

  50. Benninga HJF, van der Velde Coleen Carranza R, van Emmerik T, van der Ploeg M. Exploring the sensitivity of vegetation radar backscatter to rootzone soil moisture. Biogeosciences, submitted

    Google Scholar 

  51. Frappart F, Wigneron J-P, Li X, Liu X, Al-Yaari A, Fan L, Wang M, Moisy C, Le Masson E, Lafkih ZA et al (2020) Global monitoring of the vegetation dynamics from the vegetation optical depth (vod): a review. Remote Sensing 12(18):2915

    Google Scholar 

  52. Konings AG, Gentine P (2017) Global variations in ecosystem-scale isohydricity. Global Change Biol 23(2):891–905

    Google Scholar 

  53. Čermák J, Kučera J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18(5):529–546

    Google Scholar 

  54. Clearwater MJ, Luo Z, Mazzeo M, Dichio B (2009) An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ 32(12):1652–1663

    Google Scholar 

  55. Poyatos R, Granda V, Flo V, Adams MA, Adorján B, Aguadé D, Aidar MPM, Allen S, Alvarado-Barrientos MS, Anderson-Teixeira KJ et al (2021) Global transpiration data from sap flow measurements: the sapfluxnet database. Earth Syst Sci Data 13(6):2607–2649

    Google Scholar 

  56. Smith DM, Allen SJ (1996) Measurement of sap flow in plant stems. J Experimental Botany 47(12):1833–1844

    Google Scholar 

  57. Vandegehuchte MW, Steppe K et al (2013) Sap-flux density measurement methods: working principles and applicability. Functional Plant Biol 40(3):213–223

    Google Scholar 

  58. Víctor F, Jordi M-V, Kathy S, Bernhard S, Rafael P (2019) A synthesis of bias and uncertainty in sap flow methods. Agric Forest Meteorol 271:362–374

    Google Scholar 

  59. Zweifel R, Zimmermann L, Newbery DM (2005) Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiol 25(2):147–156

    Google Scholar 

  60. Robinson DA, Hopmans JW, Filipovic V, van der Ploeg M, Lebron I, Jones SB, Reinsch S, Jarvis N, Tuller M (2019) Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Global Change Biol 25(6):1895–1904

    Google Scholar 

  61. van der Ploeg MJ, Teuling AJ (2013) Going back to the roots: the need to link plant functional biology with vadose zone processes. Proc Environ Sci 19:379–383

    Google Scholar 

  62. van Der Ploeg MJ, Gooren HPA, Bakker G, Hoogendam CW, Huiskes C, Koopal LK, Kruidhof H, De Rooij GH (2010) Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils. Hydrol Earth Syst Sci 14(10):1787–1799

    Google Scholar 

  63. Dijkema J, Koonce JE, Shillito RM, Ghezzehei TA, Berli M, Van Der Ploeg MJ, Van Genuchten MTh (2018) Water distribution in an arid zone soil: numerical analysis of data from a large weighing lysimeter. Vadose Zone J 17(1):1–17

    Article  CAS  Google Scholar 

  64. te Brake B, Hanssen RF, van der Ploeg MJ, de Rooij GH (2013) Satellite-based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations. Vadose Zone J 12(3):1–13

    Google Scholar 

  65. Voortman BR, Bosveld FC, Bartholomeus RP, Witte JPM (2016) Spatial extrapolation of lysimeter results using thermal infrared imaging. J Hydrol 543:230–241

    Article  Google Scholar 

  66. Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Ann Rev Earth Planetary Sci 24(1):225–262

    Google Scholar 

  67. Kendall C, McDonnell JJ (2012) Isotope tracers in catchment hydrology. Elsevier

    Google Scholar 

  68. Good SP, Soderberg K, Guan K, King EG, Scanlon TD, Caylor KK (2014) \(\delta \)2h isotopic flux partitioning of evapotranspiration over a grass field following a water pulse and subsequent dry down. Water Resources Res 50(2):1410–1432

    Google Scholar 

  69. Jimenez-Rodriguez CD, Coenders-Gerrits M, Wenninger J, Gonzalez-Angarita A, Savenije H. Contribution of understory evaporation in a tropical wet forest. Hydrol Earth Syst Sci 24:2179–2206

    Google Scholar 

  70. Youri R, Philippe B, Isabelle B, Laurent C, Jean-Louis D, Jean-Paul G, Patricia R, Michel V, Thierry B (2010) Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions. Hydrol Process 24(22):3177–3194

    Google Scholar 

  71. Allison GB, Barnes CJ (1983) Estimation of evaporation from non-vegetated surfaces using natural deuterium. Nature 301(5896):143–145

    Google Scholar 

  72. Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15(9):1073–1082

    Article  CAS  Google Scholar 

  73. Yakir D, da SL Sternberg L (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123(3):297–311

    Google Scholar 

  74. Coenders-Gerrits AMJ, Van der Ent RJ, Bogaard TA, Wang-Erlandsson L, Hrachowitz M, Savenije HHG (2014) Uncertainties in transpiration estimates. Nature 506(7487):E1–E2

    Google Scholar 

  75. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127(2):171–179

    Google Scholar 

  76. Wei Z, Yoshimura K, Okazaki A, Kim W, Liu Z, Yokoi M (2015) Partitioning of evapotranspiration using high-frequency water vapor isotopic measurement over a rice paddy field. Water Resources Res 51(5):3716–3729

    Google Scholar 

  77. Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere (consiglio nationale delle ricerche laboratorio di geologia nucleare, Pisa, Italy)

    Google Scholar 

  78. Wang L, Good SP, Caylor KK, Cernusak LA (2012) Direct quantification of leaf transpiration isotopic composition. Agric Forest Meteorol 154:127–135

    Google Scholar 

  79. Sheppard PA (1958) Transfer across the earth’s surface and through the air above. Quarterly J Royal Meteorol Soc 84(361):205–224

    Article  ADS  Google Scholar 

  80. Wen X, Yang B, Sun X, Lee X (2016) Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agric Forest Meteorol 230:89–96

    Google Scholar 

  81. Griffis TJ (2013) Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application. Agric Forest Meteorol 174:85–109

    Google Scholar 

  82. Marcel G, Matthias B, Paul K, Heike W, Josefina H, Thomas H (2016) In situ unsaturated zone water stable isotope (2 h and 18 o) measurements in semi-arid environments: a soil water balance. Hydrol Earth Syst Sci 20(2):715–731

    Google Scholar 

  83. Rodriguez CDJ (2020) Evaporation partitioning of forest stands: the role of forest structure

    Google Scholar 

  84. Patrizia N, Alexander G (2018) High-resolution vertical profile measurements for carbon dioxide and water vapour concentrations within and above crop canopies. Boundary-Layer Meteorol 166(3):449–473

    Google Scholar 

  85. Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et cosmochimica acta 13(4):322–334

    Google Scholar 

  86. Álvarez-Arenas TEG, Sancho-Knapik D, Peguero-Pina JJ, Gómez-Arroyo A, Gil-Pelegrín E (2018) Non-contact ultrasonic resonant spectroscopy resolves the elastic properties of layered plant tissues. Appl Phys Lett 113(25):253704

    Google Scholar 

  87. Fariñas MD, Jimenez-Carretero D, Sancho-Knapik D, Peguero-Pina JJ, Gil-Pelegrín E, Álvarez-Arenas TG (2019) Instantaneous and non-destructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves. Plant Methods 15(1):1–10

    Google Scholar 

  88. Ritman KT, Milburn JA (1988) Acoustic emissions from plants: ultrasonic and audible compared. J Experimental Botany 39(9):1237–1248

    Article  Google Scholar 

  89. Jackson GE, Grace J (1996) Field measurements of xylem cavitation: are acoustic emissions useful? J Experimental Botany 47(11):1643–1650

    Article  CAS  Google Scholar 

  90. Zimmermann U, Haase A, Langbein D, Meinzer F (1993) Mechanisms of long-distance water transport in plants: a re-examination of some paradigms in the light of new evidence. Philos Trans Royal Soc Londn Ser B: Biol Sci 341(1295):19–31

    Google Scholar 

  91. Hervé C, Eric B, Stéphane H, Sylvain D, Brendan C, Steven J (2013) Methods for measuring plant vulnerability to cavitation: a critical review. J Experimental Botany 64(15):4779–4791

    Google Scholar 

  92. Lo Gullo MA, Salleo S (1993) Different vulnerabilities of quercus ilex l. to freeze-and summer drought-induced xylem embolism: an ecological interpretation. Plant Cell Environ 16(5):511–519

    Google Scholar 

  93. Sabine R (2015) A new type of vulnerability curve: is there truth in vine? Tree Physiol 35(4):410–414

    Google Scholar 

  94. Vergeynst LL, Dierick M, Bogaerts JAN, Cnudde V, Steppe K (2015) Cavitation: a blessing in disguise? New method to establish vulnerability curves and assess hydraulic capacitance of woody tissues. Tree Physiol 35(4):400–409

    Google Scholar 

  95. De Roo L, Vergeynst LL, De Baerdemaeker NJF, Steppe K (2016) Acoustic emissions to measure drought-induced cavitation in plants. Appl Sci 6(3):71

    Google Scholar 

  96. Gernot M, Denis C, Dani O (2012) Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media-a review. Earth-Sci Rev 112(3–4):97–114

    Google Scholar 

  97. Wolkerstorfer SV, Rosner S, Hietz P (2012) An improved method and data analysis for ultrasound acoustic emissions and xylem vulnerability in conifer wood. Physiologia Plantarum 146(2):184–191

    Google Scholar 

  98. Vergeynst LL, Sause MGR, De Baerdemaeker NJF, De Roo L, Steppe K (2016) Clustering reveals cavitation-related acoustic emission signals from dehydrating branches. Tree Physiol 36(6):786–796

    Google Scholar 

  99. Markus N, Barbara B, Sabine R, Anton N, Stefan M (2015) Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions. New Phytologist 208(2):625–632

    Google Scholar 

  100. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178(4):719–739

    Google Scholar 

  101. Van Emmerik T, Steele-Dunne S, Hut R, Gentine P, Guerin M, Oliveira RS, Wagner J, Selker J, Van de Giesen N (2017) Measuring tree properties and responses using low-cost accelerometers. Sensors 17(5):1098

    Google Scholar 

  102. Jackson T, Shenkin A, Moore J, Bunce A, Van Emmerik T, Kane B, Burcham D, James K, Selker J, Calders K et al (2019) An architectural understanding of natural sway frequencies in trees. J Royal Soc Interface 16(155):20190116

    Google Scholar 

  103. Sethi S, Dellwik E, Angelou N, Bunce A, van Emmerik T, Duperat M, Ruel J-C, Wellpott A, Van Bloem S, Achim A, Kane B, Ciruzzi DM, Loheide II SP, James K, Burcham D, Moore J, Schindler D, Kolbe S, Wiegmann K, Rudnicki M, Lieffers VJ, Selker J, Gougherty AV, Newson T, Koeser A, Miesbauer J, Samelson R, Wagner J, Coomes D, Jackson TD, Gardiner B (2020) The motion of trees in the wind: a data synthesis. Biogeosciences Discuss

    Google Scholar 

  104. van Emmerik T, Steele-Dunne S, Gentine P, Oliveira RS, Bittencourt P, Barros F, van de Giesen N (2018) Ideas and perspectives: tree–atmosphere interaction responds to water-related stem variations. Biogeosciences 15(21):6439

    Google Scholar 

  105. Ciruzzi DM, Loheide SP (2019) Monitoring tree sway as an indicator of water stress. Geophys Res Lett 46(21):12021–12029

    Google Scholar 

  106. Castaldi S, Antonucci S, Asgharina S, Battipaglia G, Marchesini LB, Cavagna M, Chini I, Cocozza C, Gianelle D, La Mantia T et al (2020) The Italian treetalker network (itt-net): continuous large scale monitoring of tree functional traits and vulnerabilities to climate change. In: EGU general assembly conference abstracts, p 20591

    Google Scholar 

  107. Sudirjo E (2020) Plant microbial fuel cell in paddy field: a power source for rural area. PhD thesis, Wageningen University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claire ten Veldhuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van den Berg, T.E. et al. (2022). Plants, Vital Players in the Terrestrial Water Cycle. In: Di Mauro, A., Scozzari, A., Soldovieri, F. (eds) Instrumentation and Measurement Technologies for Water Cycle Management . Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-08262-7_10

Download citation

Publish with us

Policies and ethics