Skip to main content

Space-Fluid Adaptive Sampling: A Field-Based, Self-organising Approach

  • Conference paper
  • First Online:
Coordination Models and Languages (COORDINATION 2022)

Abstract

A recurrent task in coordinated systems is managing (estimating, predicting, or controlling) signals that vary in space, such as distributed sensed data or computation outcomes. Especially in large-scale settings, the problem can be addressed through decentralised and situated computing systems: nodes can locally sense, process, and act upon signals, and coordinate with neighbours to implement collective strategies. Accordingly, in this work we devise distributed coordination strategies for the estimation of a spatial phenomenon through collaborative adaptive sampling. Our design is based on the idea of dynamically partitioning space into regions that compete and grow/shrink to provide accurate aggregate sampling. Such regions hence define a sort of virtualised space that is “fluid”, since its structure adapts in response to pressure forces exerted by the underlying phenomenon. We provide an adaptive sampling algorithm in the field-based coordination framework. Finally, we verify by simulation that the proposed algorithm effectively carries out a spatially adaptive sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/DanySK/Experiment-2022-Coordination-Space-Fluid.

References

  1. Audrito, G., Beal, J., Damiani, F., Viroli, M.: Space-time universality of field calculus. In: Serugendo, G.D.M., Loreti, M. (eds.) Coordination Models and Languages - 20th IFIP WG 6.1 International Conference, COORDINATION 2018, Held as Part of the 13th International Federated Conference on Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain, 18–21 June 2018. Proceedings. LNCS, vol. 10852, pp. 1–20. Springer (2018). https://doi.org/10.1007/978-3-319-92408-3_1

  2. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things. IEEE Comput. 48(9), 22–30 (2015). https://doi.org/10.1109/MC.2015.261

  3. Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device distribution in the internet of things. ACM Trans. Auton. Adapt. Syst. 12(3), 12:1–12:29 (2017). https://doi.org/10.1145/3105758

  4. Casadei, R., Viroli, M., Audrito, G., Pianini, D., Damiani, F.: Aggregate processes in field calculus. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 200–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7_12

    Chapter  MATH  Google Scholar 

  5. Fasolo, E., Rossi, M., Widmer, J., Zorzi, M.: In-network aggregation techniques for wireless sensor networks: a survey. IEEE Wirel. Commun. 14(2), 70–87 (2007). https://doi.org/10.1109/MWC.2007.358967

  6. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Nat. Comput. 12(1), 43–67 (2013). https://doi.org/10.1007/s11047-012-9324-y

  7. Garg, S., Ayanian, N.: Persistent monitoring of stochastic spatio-temporal phenomena with a small team of robots. In: Fox, D., Kavraki, L.E., Kurniawati, H. (eds.) Robotics: Science and Systems X, University of California, Berkeley, USA, July 12–16, 2014 (2014). https://doi.org/10.15607/RSS.2014.X.038. http://www.roboticsproceedings.org/rss10/p38.html

  8. Graham, R., Cortés, J.: Cooperative adaptive sampling via approximate entropy maximization. In: Proceedings of the 48th IEEE Conference on Decision and Control, CDC 2009, Combined with the 28th Chinese Control Conference, 16–18 December 2009, Shanghai, China, pp. 7055–7060. IEEE (2009). https://doi.org/10.1109/CDC.2009.5400511

  9. Hamouda, Y.E.M., Phillips, C.I.: Adaptive sampling for energy-efficient collaborative multi-target tracking in wireless sensor networks. IET Wirel. Sens. Syst. 1(1), 15–25 (2011). https://doi.org/10.1049/iet-wss.2010.0059

  10. Hoyer, S., Hamman, J.: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5(1) (2017). https://doi.org/10.5334/jors.148

  11. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  12. Lee, E.K., Viswanathan, H., Pompili, D.: SILENCE: distributed adaptive sampling for sensor-based autonomic systems. In: Schmeck, H., Rosenstiel, W., Abdelzaher, T.F., Hellerstein, J.L. (eds.) Proceedings of the 8th International Conference on Autonomic Computing, ICAC 2011, Karlsruhe, Germany, 14–18 June 2011, pp. 61–70. ACM (2011). https://doi.org/10.1145/1998582.1998594

  13. Lin, Y., Megerian, S.: Sensing driven clustering for monitoring and control applications. In: 4th IEEE Consumer Communications and Networking Conference, CCNC 2007, Las Vegas, NV, USA, 11–13 January 2007, pp. 202–206. IEEE (2007). https://doi.org/10.1109/CCNC.2007.47

  14. Liu, Z., Xing, W., Zeng, B., Wang, Y., Lu, D.: Distributed spatial correlation-based clustering for approximate data collection in WSNs. In: Barolli, L., Xhafa, F., Takizawa, M., Enokido, T., Hsu, H. (eds.) 27th IEEE International Conference on Advanced Information Networking and Applications, AINA 2013, Barcelona, Spain, 25–28 March 2013, pp. 56–63. IEEE Computer Society (2013). https://doi.org/10.1109/AINA.2013.26

  15. Manjanna, S., Hsieh, A., Dudek, G.: Scalable multi-robot system for non-myopic spatial sampling. CoRR abs/2105.10018 (2021). https://arxiv.org/abs/2105.10018

  16. Mo, Y., Beal, J., Dasgupta, S.: An aggregate computing approach to self-stabilizing leader election. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W), Trento, Italy, 3–7 September 2018, pp. 112–117. IEEE (2018). https://doi.org/10.1109/FAS-W.2018.00034

  17. Mousavi, H.K., Sun, Q., Motee, N.: Space-time sampling for network observability. CoRR abs/1811.01303 (2018). http://arxiv.org/abs/1811.01303

  18. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I. Theor. Comput. Sci. 13, 85–108 (1981). https://doi.org/10.1016/0304-3975(81)90112-2

  19. Pianini, D., Beal, J., Viroli, M.: Improving gossip dynamics through overlapping replicates. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686, pp. 192–207. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39519-7_12

    Chapter  Google Scholar 

  20. Pianini, D., Casadei, R., Viroli, M., Mariani, S., Zambonelli, F.: Time-fluid field-based coordination through programmable distributed schedulers. Log. Methods Comput. Sci. 17(4) (2021). https://doi.org/10.46298/lmcs-17(4:13)2021

  21. Pianini, D., Casadei, R., Viroli, M., Natali, A.: Partitioned integration and coordination via the self-organising coordination regions pattern. Future Gener. Comput. Syst. 114, 44–68 (2021). https://doi.org/10.1016/j.future.2020.07.032

  22. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computational systems with ALCHEMIST. J. Simul. 7(3), 202–215 (2013). https://doi.org/10.1057/jos.2012.27

  23. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, 13–17 April 2015, pp. 1846–1853 (2015). https://doi.org/10.1145/2695664.2695913

  24. Pianini, D., WhiteSource Renovate: Danysk/experiment-2022-coordination-space-fluid: 0.5.0-dev08+67e7add (2022). https://doi.org/10.5281/ZENODO.6473292

  25. Rahimi, M.H., Hansen, M.H., Kaiser, W.J., Sukhatme, G.S., Estrin, D.: Adaptive sampling for environmental field estimation using robotic sensors. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, 2–6 August 2005, pp. 3692–3698. IEEE (2005). https://doi.org/10.1109/IROS.2005.1545070

  26. Szczytowski, P., Khelil, A., Suri, N.: Asample: adaptive spatial sampling in wireless sensor networks. In: IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, SUTC 2010 and IEEE International Workshop on Ubiquitous and Mobile Computing, UMC 2010, Newport Beach, California, USA, 7–9 June 2010, pp. 35–42. IEEE Computer Society (2010). https://doi.org/10.1109/SUTC.2010.37

  27. Thompson, S.K.: Adaptive cluster sampling. J. Am. Stat. Assoc. 85(412), 1050–1059 (1990). https://doi.org/10.1080/01621459.1990.10474975. https://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10474975

  28. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient collective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul. 28(2), 1–28 (2018). https://doi.org/10.1145/3177774

  29. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From distributed coordination to field calculus and aggregate computing. J. Log. Algebraic Methods Program. 109, 100486 (2019). https://doi.org/10.1016/j.jlamp.2019.100486

  30. Virrankoski, R., Savvides, A.: TASC: topology adaptive spatial clustering for sensor networks. In: IEEE 2nd International Conference on Mobile Adhoc and Sensor Systems, MASS 2005, The City Center Hotel, Washington, USA, 7–10 November 2005, p. 10. IEEE Computer Society (2005). https://doi.org/10.1109/MAHSS.2005.1542850

  31. Wu, F., Kao, Y., Tseng, Y.: From wireless sensor networks towards cyber physical systems. Pervasive Mob. Comput. 7(4), 397–413 (2011). https://doi.org/10.1016/j.pmcj.2011.03.003

  32. Yao, J.T., Vasilakos, A.V., Pedrycz, W.: Granular computing: perspectives and challenges. IEEE Trans. Cybern. 43(6), 1977–1989 (2013). https://doi.org/10.1109/TSMCC.2012.2236648

Download references

Acknowledgements

This work has been supported by the MIUR PRIN 2017 Project “Fluidware” (N. 2017KRC7KT) and the MIUR FSE REACT-EU PON R &I 2014-2022 (N. CCI2014IT16M2OP005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Casadei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casadei, R., Mariani, S., Pianini, D., Viroli, M., Zambonelli, F. (2022). Space-Fluid Adaptive Sampling: A Field-Based, Self-organising Approach. In: ter Beek, M.H., Sirjani, M. (eds) Coordination Models and Languages. COORDINATION 2022. IFIP Advances in Information and Communication Technology, vol 13271. Springer, Cham. https://doi.org/10.1007/978-3-031-08143-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08143-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08145-3

  • Online ISBN: 978-3-031-08143-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics