Skip to main content

Generation of Parametric Gait Patterns

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 24))

Abstract

In this paper, a methodology to generate realistic gait patterns is presented. Human gait motion capture data is used along with a kinematic model of the human lower extremity to derive a parametric and time-continuous analytical description of the walking motion. This allows for reproduction of individual recorded gait cycles and for generating new artificial gait cycles. A data pool of about 5700 reproduced gait cycles from 120 participants walking at different velocities is used to generate trajectories of human lower limb joints. Walking motions of simulated male or female persons can thus be synthesized with a prescribed gait speed. The method shall serve as scientific basis for research focused on rehabilitation, motion assistance and simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Generation of Parametric Gait Patterns (video). https://youtu.be/qRqPaddAPTI

  2. Bertram, J.E., Ruina, A.: Multiple walking speed-frequency relations are predicted by constrained optimization. J. Theor. Biol. 209(4), 445–453 (2001). https://doi.org/10.1006/jtbi.2001.2279

    Article  Google Scholar 

  3. Bruening, D.A., Frimenko, R.E., Goodyear, C.D., Bowden, D.R., Fullenkamp, A.M.: Sex differences in whole body gait kinematics at preferred speeds. Gait Posture 41(2), 540–545 (2015). https://doi.org/10.1016/j.gaitpost.2014.12.011

    Article  Google Scholar 

  4. Fukuchi, C.A., Fukuchi, R.K., Duarte, M.: A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals. PeerJ 2018(4), e4640 (2018). https://doi.org/10.7717/peerj.4640

    Article  Google Scholar 

  5. Harrington, M.E., Zavatsky, A.B., Lawson, S.E., Yuan, Z., Theologis, T.N.: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J. Biomech. 40(3), 595–602 (2007). https://doi.org/10.1016/j.jbiomech.2006.02.003

    Article  Google Scholar 

  6. van Hedel, H.J., Tomatis, L., Müller, R.: Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading. Gait Posture 24(1), 35–45 (2006). https://doi.org/10.1016/j.gaitpost.2005.06.015

    Article  Google Scholar 

  7. Hof, A.L.: Scaling gait data to body size. Gait Posture 4(3), 222–223 (1996). https://doi.org/10.1016/0966-6362(95)01057-2

    Article  Google Scholar 

  8. Kainz, H., Carty, C.P., Modenese, L., Boyd, R.N., Lloyd, D.G.: Estimation of the hip joint centre in human motion analysis: a systematic review. Clin. Biomech. 30(4), 319–329 (2015). https://doi.org/10.1016/j.clinbiomech.2015.02.005

    Article  Google Scholar 

  9. Kuo, A.D.: A simple model of bipedal walking predicts the preferred speed-step length relationship. J. Biomech. Eng. 123(3), 264–269 (2001). https://doi.org/10.1115/1.1372322

    Article  Google Scholar 

  10. Lelas, J.L., Merriman, G.J., Riley, P.O., Kerrigan, D.C.: Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture 17(2), 106–112 (2003). https://doi.org/10.1016/S0966-6362(02)00060-7

    Article  Google Scholar 

  11. Lencioni, T., Carpinella, I., Rabuffetti, M., Marzegan, A., Ferrarin, M.: Human kinematic, kinetic and EMG data during different walking and stair ascending and descending tasks. Sci. Data 6(1), 1–10 (2019). https://doi.org/10.1038/s41597-019-0323-z

    Article  Google Scholar 

  12. Neptune, R.R., Sasaki, K.: Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J. Exp. Biol. 208(5), 799–808 (2005). https://doi.org/10.1242/jeb.01435

    Article  Google Scholar 

  13. Schreiber, C., Moissenet, F.: A multimodal dataset of human gait at different walking speeds established on injury-free adult participants. Sci. Data 6(1), 1–7 (2019). https://doi.org/10.1038/s41597-019-0124-4

    Article  Google Scholar 

  14. Sekiya, N., Nagasaki, H.: Reproducibility of the walking patterns of normal young adults: test-retest reliability of the walk ratio (step-length/step-rate). Gait Posture 7(3), 225–227 (1998). https://doi.org/10.1016/S0966-6362(98)00009-5

    Article  Google Scholar 

  15. Watt, J.R., Franz, J.R., Jackson, K., Dicharry, J., Riley, P.O., Kerrigan, D.C.: A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin. Biomech. 25(5), 444–449 (2010). https://doi.org/10.1016/j.clinbiomech.2009.09.002

    Article  Google Scholar 

  16. Wu, G., et al.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - part I: ankle, hip, and spine. J. Biomech. 35(4), 543–548 (2002). https://doi.org/10.1016/S0021-9290(01)00222-6

    Article  Google Scholar 

  17. Ziegler, J., Reiter, A., Gattringer, H., Müller, A.: Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data. Med. Eng. Phys. 84, 193–202 (2020). https://doi.org/10.1016/j.medengphy.2020.08.009

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Linz Institute of Technology (LIT) and the COMET-K2 Center for Symbiotic Mechatronics of the Linz Center of Mechatronics (LCM) funded by the Austrian federal government and the federal state of Upper Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Ziegler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ziegler, J., Gattringer, H., Müller, A. (2022). Generation of Parametric Gait Patterns. In: Altuzarra, O., Kecskeméthy, A. (eds) Advances in Robot Kinematics 2022. ARK 2022. Springer Proceedings in Advanced Robotics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-08140-8_41

Download citation

Publish with us

Policies and ethics