Skip to main content

A Few More and Recently Reported Herbs

  • Chapter
  • First Online:
Androgenetic Alopecia From A to Z

Abstract

The following herbs have also been reported to possess hair-growth properties, and their results are reported in summary and in alphabetical order. The reason these herbs do not “entertain” a dedicated chapter is because there is no available data on use in humans for most of these herbs. Also, their safety, adequate concentration, required dosage scheme, the long-term safety of use on the scalp, and other significant parameters are completely undetermined. For these reasons, none of these is recommended for the treatment of AGA/FPHL, even though some authors consider the use of specific herbal solutions permissible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yook CS. Coloured medicinal plants of Korean. Seoul: Academy Publishing; 1993.

    Google Scholar 

  2. Kim SC, Kang JI, Park DB, Lee YK, Hyun JW, Koh YS, Yoo ES, Kim JA, Kim YH, Kang HK. Promotion effect of acankoreoside J, a Lupane-triterpene in Acanthopanax koreanum, on hair growth. Arch Pharm Res. 2012;35(8):1495–503.

    CAS  PubMed  Google Scholar 

  3. Lee J, Lee YJ, Oh SM, Yi JM, Kim NS, Bang OS. Bioactive compounds from the roots of Asiasarum heterotropoides. Molecules. 2013;19(1):122–38.

    PubMed  PubMed Central  Google Scholar 

  4. Rho SS, Park SJ, Hwang SL, Lee MH, Kim CD, Lee IH, Chang SY, Rang MJ. The hair growth promoting effect of Asiasari radix extract and its molecular regulation. J Dermatol Sci. 2005;38(2):89–97.

    PubMed  Google Scholar 

  5. Begum S, Lee MR, Gu LJ, Hossain MJ, Kim HK, Sung CK. Comparative hair restorer efficacy of medicinal herb on nude (Foxn1nu) mice. Biomed Res Int. 2014;2014:319795.

    PubMed  PubMed Central  Google Scholar 

  6. Hong EJ, Na KJ, Choi IG, Choi KC, Jeung EB. Antibacterial and antifungal effects of essential oils from coniferous trees. Biol Pharm Bull. 2004;27(6):863–6.

    CAS  PubMed  Google Scholar 

  7. Joo SS, Yoo YM, Ko SH, Choi W, Park MJ, Kang HY, Choi KC, Choi IG, Jeung EB. Effects of essential oil from Chamaecypris obtusa on the development of atopic dermatitis-like skin lesions and the suppression of Th cytokines. J Dermatol Sci. 2010;60(2):122–5.

    CAS  PubMed  Google Scholar 

  8. Lee GS, Hong EJ, Gwak KS, Park MJ, Choi KC, Choi IG, Jang JW, Jeung EB. The essential oils of Chamaecyparis obtusa promote hair growth through the induction of vascular endothelial growth factor gene. Fitoterapia. 2010;81(1):17–24.

    CAS  PubMed  Google Scholar 

  9. Park YO, Kim SE, Kim YC. Action mechanism of Chamaecyparis obtusa oil on hair growth. Toxicol Res. 2013;29(4):241–7.

    PubMed  PubMed Central  Google Scholar 

  10. Neher R. Steroid chromatography. Amsterdam, London: Elsevier; 1964. p. 133.

    Google Scholar 

  11. Chawech R, Jarraya R, Girardi C, Vansteelandt M, Marti G, Nasri I, Racaud-Sultan C, Fabre N. Cucurbitacins from the leaves of Citrullus colocynthis (L.) Schrad. Molecules. 2015;20(10):18001–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nehdi IA, Sbihi H, Tan CP, Al-Resayes SI. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: comparison with Helianthus annuus (sunflower) seed oil. Food Chem. 2013;136(2):348–53.

    CAS  PubMed  Google Scholar 

  13. Chunekar KC, Hota NP. Plants of Bhavprakash, vol. Vol 1. New Delhi: National Academy of Ayurveda; 2002. p. 116.

    Google Scholar 

  14. Roy RK, Thakur M, Dixit VK. Development and evaluation of polyherbal formulation for hair growth-promoting activity. J Cosmet Dermatol. 2007;6(2):108–12.

    PubMed  Google Scholar 

  15. Dhanotia R, Chauhan NS, Saraf DK, Dixit VK. Effect of Citrullus colocynthis Schrad fruits on testosterone-induced alopecia. NatProdRes. 2011;25(15):1432–43.

    CAS  Google Scholar 

  16. Hossain CF, Al-Amin M, Sayem AS, Siragee IH, Tunan AM, Hassan F, Kabir MM, Sultana GN. Antinociceptive principle from Curcuma aeruginosa. BMC Complement Altern Med. 2015;15:191.

    PubMed  PubMed Central  Google Scholar 

  17. Reanmongkol W, Subhadhirasakul S, Khaisombat N, et al. Investigation the antinociceptive, antipyretic, and anti-inflammatory activities of Curcuma aeruginosa Roxb. Extracts in experimental animals. J Sci Technol. 2006;28(5):999–1008.

    Google Scholar 

  18. Kamazeri TS, Samah OA, Taher M, Susanti D, Qaralleh H. Antimicrobial activity and essential oils of Curcuma aeruginosa, curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pac J Trop Med. 2012;5(3):202–9.

    CAS  PubMed  Google Scholar 

  19. Moon-ai W, Niyomploy P, Boonsombat R, et al. A superoxide dismutase purified from the rhizome of Curcuma aeruginosa Roxb. As inhibitor of nitric oxide production in the macrophage-like RAW 264.7 cell line. Appl Biochem Biotechnol. 2012;166(8):2138–55.

    CAS  PubMed  Google Scholar 

  20. Suphrom N, Pumthong G, Khorana N, Waranuch N, Limpeanchob N, Ingkaninan K. Anti-androgenic effect of sesquiterpenes isolated from the rhizomes of Curcuma aeruginosa Roxb. Fitoterapia. 2012;83(5):864–71.

    CAS  PubMed  Google Scholar 

  21. Takano I, Yasuda I, Takeya I, Itokawa H. Guaiane sesquiterpene lactone from Curcuma aeruginosa. Phytochemistry. 1995;40(4):1197–200.

    CAS  Google Scholar 

  22. Thaina P, Tungcharoen P, Wongnawa M, Reanmongkol W, Subhadhirasakul S. Uterine relaxant effects of Curcuma aeruginosa Roxb. Rhizome extracts. J Ethnopharmacol. 2009;121(3):433–43.

    CAS  PubMed  Google Scholar 

  23. Sirat HM, Jamil S, Hussain J. Essential oil of Curcuma aeruginosa Roxb. from Malaysia. J Essent Oil Res. 1998;10:453–8.

    CAS  Google Scholar 

  24. Suphrom N, Srivilai J, Pumthong G, Khorana N, Waranuch N, Limpeanchob N, Ingkaninan K. Stability studies of antiandrogenic compounds in Curcuma aeruginosa Roxb. Extract. J Pharm Pharmacol. 2014;66(9):1282–93.

    CAS  PubMed  Google Scholar 

  25. Pumthong G, Asawanonda P, Varothai S, et al. Curcuma aeruginosa, a novel botanically derived 5α-reductase inhibitor in the treatment of male-pattern baldness: a multicenter, randomized, double-blind, placebo-controlled study. J Dermatolog Treat. 2012;23(5):385–92.

    PubMed  Google Scholar 

  26. Srivilai J, Waranuch N, Tangsumranjit A, Khorana N, Ingkaninan K. Germacrone and sesquiterpene-enriched extracts from Curcuma aeruginosa Roxb. Increase skin penetration of minoxidil, a hair growth promoter. Drug Deliv Transl Res. 2018;8(1):140–9.

    CAS  PubMed  Google Scholar 

  27. Srivilai J, Phimnuan P, Jaisabai J, et al. Curcuma aeruginosa Roxb. essential oil slows hair-growth and lightens skin in axillae; a randomised, double blinded trial. Phytomedicine. 2017;25:29–38.

    CAS  PubMed  Google Scholar 

  28. Srivilai J, Nontakhot K, Nutuan T, et al. Sesquiterpene-enriched extract of Curcuma aeruginosa Roxb. Retards axillary hair growth: a randomised, placebo-controlled, double-blind study. Skin Pharmacol Physiol. 2018;31(2):99–106.

    CAS  PubMed  Google Scholar 

  29. Gupta M, Mazumder UK, Pal DK, Bhattacharya S. Anti-steroidogenic activity of methanolic extract of Cuscuta reflexa roxb. Stem and Corchorus olitorius Linn. Seed in mouse ovary. Indian J Exp Biol. 2003;41(6):641–4.

    CAS  PubMed  Google Scholar 

  30. Roy RK, Thakur M, Dixit VK. Effect of Cuscuta reflexa Roxb on hair growth activity of albino rats. Indian Drugs. 2006;43:951–6.

    Google Scholar 

  31. Kritikar KR, Basu BD. Lee in Geol. Kit for hair growth. KR20040039550 Chronica Botanica Indian Medicinal plants: New Delhi; 2004.

    Google Scholar 

  32. Pandit S, Chauhan NS, Dixit VK. Effect of Cuscuta reflexa Roxb on androgen-induced alopecia. J Cosmet Dermatol. 2008;7(3):199–204.

    PubMed  Google Scholar 

  33. Patel S, Sharma V, Chauhan NS, Dixit VK. A study on the extracts of Cuscuta reflexa Roxb. in treatment of cyclophosphamide induced alopecia. Daru. 2014;22(1):7.

    PubMed  PubMed Central  Google Scholar 

  34. Wijesekara I, Yoon NY, Kim SK. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. Biofactors. 2010;36(6):408–14.

    CAS  PubMed  Google Scholar 

  35. Thomas NV, Kim SK. Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs. 2013;11(1):146–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang JI, Kim SC, Kim MK, Boo HJ, Jeon YJ, Koh YS, Yoo ES, Kang SM, Kang HK. Effect of Dieckol, a component of Ecklonia cava, on the promotion of hair growth. Int J Mol Sci. 2012;13(5):6407–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bak SS, Ahn BN, Kim JA, Shin SH, Kim JC, Kim MK, Sung YK, Kim SK. Ecklonia cava promotes hair growth. Clin Exp Dermatol. 2013;38(8):904–10.

    CAS  PubMed  Google Scholar 

  38. Shin H, Cho AR, Kim DY, Munkhbayer S, Choi SJ, Jang S, Kim SH, Shin HC, Kwon O. Enhancement of human hair growth using Ecklonia cava polyphenols. Ann Dermatol. 2016;28(1):15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jahan R, Al-Nahain A, Majumder S, Rahmatullah M. Ethnopharmacological Significance of Eclipta alba (L.) Hassk. (Asteraceae). Int Sch Res Notices. 2014;2014:385969.

    PubMed  PubMed Central  Google Scholar 

  40. Sidra S, Hussain S, Malik F. Accentuating the prodigious significance of Eclipta alba - an inestimable medicinal plant. Pak J Pharm Sci. 2013;26(6):1259–66.

    PubMed  Google Scholar 

  41. The Wealth of India. Vol. C. New Delhi: National Institute of Scientific Communication and Research; 1992. p 612.

    Google Scholar 

  42. Chopra RN, Nayar SL, Chopra IC. Glossary of Indian medicinal plants. New Delhi: C.S.I.R; 1955.

    Google Scholar 

  43. Kritikar KR, Basu BD. Chronica Botanica Indian Medicinal plants. New Delhi; 1975.

    Google Scholar 

  44. Baishiyou R. Hair tonic. JP5201833; 1993.

    Google Scholar 

  45. Kuk LS, Byong-Jo H, Song-Jun M, Kil-Sung K. Hair growth composition. KR950006061B; 1995.

    Google Scholar 

  46. Gyu LW. Agent for preventing hair loss and stimulating or promoting hair growth using skin of peach. KR20010044451; 2001.

    Google Scholar 

  47. Endo S. Hair growing and beautifying agent. JP2006151934; 2006.

    Google Scholar 

  48. Wang X. Hair growth, beauty–care and health care medicinal liquor and method for preparing same. CN1154250; 1997.

    Google Scholar 

  49. Cheol G. Ryu. Hair-restorer and manufacturing process thereof. R20040016331; 2004.

    Google Scholar 

  50. Roy RK, Thakur M, Dixit VK. Hair growth promoting activity of Eclipta alba in male albino rats. Arch Dermatol Res. 2008;300(7):357–64.

    CAS  PubMed  Google Scholar 

  51. Datta K, Singh AT, Mukherjee A, Bhat B, Ramesh B, Burman AC. Eclipta alba extract with potential for hair growth promoting activity. J Ethnopharmacol. 2009;124(3):450–6.

    PubMed  Google Scholar 

  52. Begum S, Lee MR, Gu LJ, Hossain J, Sung CK. Exogenous stimulation with Eclipta alba promotes hair matrix keratinocyte proliferation and downregulates TGF-β1 expression in nude mice. Int J Mol Med. 2015;35(2):496–502.

    PubMed  Google Scholar 

  53. Yadav NK, Arya RK, Dev K, Sharma C, Hossain Z, Meena S, Arya KR, Gayen JR, Datta D, Singh RK. Alcoholic extract of Eclipta alba shows in vitro antioxidant and anticancer activity without exhibiting toxicological effects. Oxidative Med Cell Longev. 2017;2017:9094641.

    Google Scholar 

  54. Kawano M, Han J, Kchouk ME, Isoda H. Hair growth regulation by the extract of aromatic plant Erica multiflora. J Nat Med. 2009;63(3):335–9.

    PubMed  Google Scholar 

  55. Mimica-Dukic N, Simin N, Cvejic J, Jovin E, Orcic D, Bozin B. Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules. 2008;13(7):1455–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stajner D, Popovi BM, Canadanovi-Brunet J, Anackov G. Exploring Equisetum arvense L., Equisetum ramosissimum L. and Equisetum telmateia L. as sources of natural antioxidants. Phytother Res. 2009;23(4):546–50.

    PubMed  Google Scholar 

  57. Holzhuter G, Narayanan K, Gerber T. Structure of silica in Equisetum arvense. Anal Bioanal Chem. 2003;376(4):512–7.

    CAS  PubMed  Google Scholar 

  58. D’Agostino M, Dini A, Pizza C, Senatore F, Aquino R. Sterols from Equisetum arvense. Boll Soc Ital Biol Sper. 1984;60(12):2241–5.

    PubMed  Google Scholar 

  59. Graefe EU, Veit M. Urinary metabolites of flavonoids and hydroxycinnamic acids in humans after application of a crude extract from Equisetum arvense. Phytomedicine. 1999;6(4):239–46.

    CAS  PubMed  Google Scholar 

  60. Sakurai N, Iizuka T, Nakayama S, Funayama H, Noguchi M, Nagai M. Vasorelaxant activity of caffeic acid derivatives from Cichorium intybus and Equisetum arvense. Yakugaku Zasshi. 2003;123(7):593–8.

    CAS  PubMed  Google Scholar 

  61. Myagmar BE, Aniya Y. Free radical scavenging action of medicinal herbs from Mongolia. Phytomedicine. 2000;7(3):221–9.

    CAS  PubMed  Google Scholar 

  62. Chaiyana W, Punyoyai C, Somwongin S, et al. Inhibition of 5α-reductase, IL-6 secretion, and oxidation process of equisetum debile Roxb. ex vaucher extract as functional food and nutraceuticals ingredients. Nutrients. 2017;9(10).

    Google Scholar 

  63. Maeda H, Miyamoto K, Sano T. Occurrence of dermatitis in rats fed a cholesterol diet containing field horsetail (Equisetum arvense L.). J Nutr Sci Vitaminol (Tokyo). 1997;43(5):553–63.

    CAS  PubMed  Google Scholar 

  64. Sudan BJ. Seborrhoeic dermatitis induced by nicotine of horsetails (Equisetum arvense L.). Contact Dermatitis. 1985;13(3):201–2.

    CAS  PubMed  Google Scholar 

  65. Chang YC, Huang KX, Huang AC, Ho YC, Wang CJ. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDLmediated macrophages apoptosis. Food Chem Toxicol. 2006;44(7):1015–23.

    CAS  PubMed  Google Scholar 

  66. Hirunpanich V, Utaipat A, Morales NP, Bunyapraphatsara N, Sato H, Herunsalee A, Suthisisang C. Antioxidant effects of aqueous extracts from dried calyx of Hibiscus sabdariffa Linn. (Roselle) in vitro using rat low-density lipoprotein (LDL). Biol Pharm Bull. 2005;28(3):481–4.

    CAS  PubMed  Google Scholar 

  67. Masaki H, Sakaki S, Atsumi T, Sakurai H. Active-oxygen scavenging activity of plant extracts. Biol Pharm Bull. 1995;18(1):162–6.

    CAS  PubMed  Google Scholar 

  68. Mhaskar KS, Blatter E, Calus JF. Kirtikar and Basu's illustrated Indian medicinal plant their usage in Aurveda and Unani medicine. India: Shri Satguru Publication; 2000. p. 462–4.

    Google Scholar 

  69. Nadkarni AK. Indian Materia Medica. \: Bombay Popular Prakashan; 1976; p 1199.

    Google Scholar 

  70. Anonymous. The Wealth of India. A Dictionary of Indian Raw Materials and Industrial Products. New Delhi, India: CSIR; 1956. p. 91–2.

    Google Scholar 

  71. Kurup PNV, Ramdas VNK, Joshi P. Handbook of Medicinal Plants. New Delhi: Council for Research in Ayurveda and Siddha; 1979. p. 86.

    Google Scholar 

  72. Nadkarni AK. Indian Materia Medica. Bombay: Bombay Popular Prakashan; 1954. p. 631.

    Google Scholar 

  73. Ali M, Ansari SH. Hair care and herbal drugs. Indian Journal of Natural Products. 1997;13(1):3–5.

    Google Scholar 

  74. Singh V, Ali M, Upadhyay S. Study of colouring effect of herbal hair formulations on graying hair. Pharm Res. 2015;7(3):259–62.

    CAS  Google Scholar 

  75. Adhirajan N, Ravi Kumar T, Shanmugasundaram N, Babu M. In vivo and in vitro evaluation of hair growth potential of Hibiscus rosa-sinensis Linn. J Ethnopharmacol. 2003;88(2–3):235–9.

    CAS  PubMed  Google Scholar 

  76. Liu YN, Su XH, Huo CH, Zhang XP, Shi QW, Gu YC. Chemical constituents of plants from the genus Illicium. Chem Biodivers. 2009;6(7):963–89.

    CAS  PubMed  Google Scholar 

  77. Sakaguchi I, Ishimoto H, Matsuo M, Ikeda N, Minamino M, Kato Y. The water-soluble extract of Illicium anisatum stimulates mouse vibrissae follicles in organ culture. Exp Dermatol. 2004;13(8):499–504.

    PubMed  Google Scholar 

  78. Li S. Bencao-gangmu. In: Miyashita S, editor. . Osaka: Orient Publishing; 1992. p. 579–80.

    Google Scholar 

  79. Matsuda H, Yamazaki M, Naruo S, Asanuma Y, Kubo M. Anti-androgenic and hair growth promoting activities of Lygodii spora (spore of Lygodium japonicum) I. active constituents inhibiting testosterone 5alpha-reductase. Biol Pharm Bull. 2002;25(5):622–6.

    CAS  PubMed  Google Scholar 

  80. https://www.spicefactors.com/pepper-shows-tentative-start-to-2018/

  81. Hirata N, Tokunaga M, Naruto S, Iinuma M, Matsuda H. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf. Biol Pharm Bull. 2007;30(12):2402–5.

    CAS  PubMed  Google Scholar 

  82. Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and their bioactive phytochemicals for Women's health. Pharmacol Rev. 2016;68(4):1026–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Murata K, Noguchi K, Kondo M, Onishi M, Watanabe N, Okamura K, Matsuda H. Inhibitory activities of Puerariae Flos against testosterone 5α-reductase and its hair growth promotion activities. J Nat Med. 2012;66(1):158–65.

    CAS  PubMed  Google Scholar 

  84. Wang M, Kikuzaki H, Zhu N, Sang S, Nakatani N, Ho CT. Isolation and structural elucidation of two new glycosides from sage (Salvia officinalis L). J Agric Food Chem. 2000;48(2):235–8.

    CAS  PubMed  Google Scholar 

  85. Baricevic D, Sosa S, Della Loggia R, Tubaro A, Simonovska B, Krasna A, Zupancic A. Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J Ethnopharmacol. 2001;75(2–3):125–32.

    CAS  PubMed  Google Scholar 

  86. Santos-Gomes PC, Fernandes-Ferreira M. Essential oils produced by in vitro shoots of sage (Salvia officinalis L.). J Agric Food Chem. 2003;51(8):2260–6.

    CAS  PubMed  Google Scholar 

  87. Lu Y, Foo LY. Polyphenolics of salvia—a review. Phytochemistry. 2002;59(2):117–40.

    CAS  PubMed  Google Scholar 

  88. Eun-AH H-JL, Weon-Jong Y. Inhibitory effect of Salvia officinalis on the inflammatory cytokines and inducible nitric oxide synthesis in murine macrophage RAW264.7. Yakhak Hoechi. 2004;48(2):159–64.

    Google Scholar 

  89. Limoncu ME, Balcıoğlu C, Oyur T, Zeybek G, Zeybek U. In vitro investigation of the Pediculicidal activities of the volatile oil components of some medical plants raised in Turkey. Turkiye Parazitol Derg. 2017;41(4):208–13.

    PubMed  Google Scholar 

  90. Jin GR, Zhang YL, Yap J, Boisvert WA, Lee BH. Hair growth potential of Salvia plebeia extract and its associated mechanisms. Pharm Biol. 2020;58(1):400–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jang E, Inn KS, Jang YP, Lee KT, Lee JH. Phytotherapeutic activities of Sanguisorba officinalis and its chemical constituents: a review. Am J Chin Med. 2018;46(2):299–318.

    CAS  PubMed  Google Scholar 

  92. Higgins CA, Petukhova L, Harel S, Ho YY, Drill E, Shapiro L, Wajid M, Christiano AM. FGF5 is a crucial regulator of hair length in humans. Proc Natl Acad Sci U S A. 2014;111(29):10648–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Burg D, Yamamoto M, Namekata M, Haklani J, Koike K, Halasz M. Promotion of anagen, increased hair density and reduction of hair fall in a clinical setting following identification of FGF5-inhibiting compounds via a novel 2-stage process. Clin Cosmet Investig Dermatol. 2017;10:71–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Takahashi K, Takani M. Studies of constituents of medicinal plants. XVII. Constituents of Schizandra nigra max. And their carbon13 nuclear magnetic resonance spectra. Chem Pharm Bull (Tokyo). 1976;24(9):2000–6.

    CAS  PubMed  Google Scholar 

  95. Takani M, Ohya K, Takahashi K. Studies on constituents of medicinal plants. XXII. Constituents of Schizandra nigra max. Chem Pharm Bull (Tokyo). 1979;27(6):1422–5.

    CAS  PubMed  Google Scholar 

  96. Kang JI, Kim SC, Hyun JH, Kang JH, Park DB, Lee YJ, Yoo ES, Kang HK. Promotion effect of Schisandra nigra on the growth of hair. EurJDermatol. 2009;19(2):119–25.

    Google Scholar 

  97. Nibbs AE, Scheidt KA. Asymmetric methods for the synthesis of flavanones, Chromanones, and Azaflavanones. European J Org Chem. 2012;2012(3):449–62.

    CAS  PubMed  Google Scholar 

  98. Sasajima M, Moriwaki S, Hotta M, Kitahara T, Takema Y. Trans-3,4'-Dimethyl-3-hydroxyflavanone, a hair growth enhancing active component, decreases active transforming growth factor beta2 (TGF-beta2) through control of urokinase-type plasminogen activator (uPA) on the surface of keratinocytes. Biol Pharm Bull. 2008;31(3):449–53.

    CAS  PubMed  Google Scholar 

  99. Manabe M, Tsuboi R, Itami, et al. Drafting Committee for the Guidelines for the Diagnosis and Treatment of Male- and Female-Pattern Hair Loss. Guidelines for the diagnosis and treatment of male-pattern and female-pattern hair loss, 2017 version. J Dermatol. 2018;45(9):1031–43.

    PubMed  Google Scholar 

  100. Hotta M, Imokawa G. The hair-growth effects of t-flavanone, Anti-aging Series 1 (Facts about gray hair, hair loss and hair growth); 2005. p. 110–2.

    Google Scholar 

  101. Hotta M, Imokawa G. The hair-growth effects of t-flavanone, Anti-aging Series 1 (Facts about gray hair, hair loss and hair growth); 2005. p. 113–5.

    Google Scholar 

  102. Nagasawa A, Wakisaka E, Kidena H, Nomura T, Hotta M, Taguchi H, Moriwaki S. T-flavanone improves the male pattern of hair loss by enhancing hair-anchoring strength: a randomized, double-blind, placebo-controlled study. Dermatol Ther (Heidelb). 2016;6(1):59–68.

    PubMed  Google Scholar 

  103. Jaybhaye D, Varma S, Gagne N, Bonde V, Gite A, Bhosle D. Effect of Tectona grandis Linn. Seeds on hair growth activity of albino mice. Int J Ayurveda Res. 2010;1(4):211–5.

    PubMed  PubMed Central  Google Scholar 

  104. Mindell E. Earl Mindell's Herb Bible. New York: Fireside Books/Simon & Schuster; 1992. p. 93–4.

    Google Scholar 

  105. Wang GR, Tang WZ, Yao QQ, Zhong H, Liu YJ. New flavonoids with 2BS cell proliferation promoting effect from the seeds of Trigonella foenum-graecum L. J Nat Med. 2010;64(3):358–61.

    CAS  PubMed  Google Scholar 

  106. Shang M, Cai S, Han J, Li J, Zhao Y, Zheng J, Namba T, Kadota S, Tezuka Y, Fan W. Studies on flavonoids from fenugreek (Trigonella foenumgraecum L.). Zhongguo Zhong Yao Za Zhi. 1998;23(10):614–6.

    CAS  PubMed  Google Scholar 

  107. Kumar MS, Unnikrishnan MK, Patra S, Murthy K, Srinivasan KK. Naringin and naringenin inhibit nitrite-induced methemoglobin formation. Pharmazie. 2003;58(8):564–6.

    CAS  PubMed  Google Scholar 

  108. Mira L, Fernandez MT, Santos M, Rocha R, Florencio MH, Jennings KR. Interactions of flavonoids with iron & copper ions: a mechanism for their antioxidant activity. Free Radic Res. 2002;36(11):1199–208.

    CAS  PubMed  Google Scholar 

  109. Marker RE, Krueger J. Sterols. CXII. Sapogenins. XLI. The preparation of Trillin and its conversion to progesterone. J Am Chem Soc. 1940;62(12):3349–50.

    CAS  Google Scholar 

  110. Djerassi C. Steroid research at Syntex: "the pill" and cortisone. Steroids. 1992;57(12):631–41.

    CAS  PubMed  Google Scholar 

  111. Jesus M, Martins AP, Gallardo E, Silvestre S. Diosgenin: recent highlights on pharmacology and analytical methodology. J Anal Methods Chem. 2016;2016:4156293.

    PubMed  PubMed Central  Google Scholar 

  112. Taylor WG, Zulyniak HJ, Richards KW, Acharya SN, Bittman S, Elder JL. Variation in diosgenin levels among 10 accessions of fenugreek seeds produced in western Canada. J Agric Food Chem. 2002;50(21):5994–7.

    CAS  PubMed  Google Scholar 

  113. Lee J, Jung K, Kim YS, Park D. Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3-kinase pathway (PI3K) signaling. Life Sci. 2007;81(3):249–54.

    CAS  PubMed  Google Scholar 

  114. Chen Y, Tang YM, Yu SL, Han YW, Kou JP, Liu BL, Yu BY. Advances in the pharmacological activities and mechanisms of diosgenin. Chin J Nat Med. 2015;13(8):578–87.

    CAS  PubMed  Google Scholar 

  115. Nagulapalli Venkata KC, Swaroop A, Bagchi D, Bishayee A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol Nutr Food Res. 2017;61(6) https://doi.org/10.1002/mnfr.201600950.

  116. Moers-Carpi M. Influence of nutritive factors on hair growth. Nutritive Beeinflussung des Haarwachstums Aktuelle Dermatologie. 2011;37(5):171–5.

    Google Scholar 

  117. Kassem A, Al-Aghbari A, AL-Habori M, Al-Mamary M. Evaluation of the potential antifertility effect of fenugreek seeds in male and female rabbits. Contraception. 2006;73(3):301–6.

    PubMed  Google Scholar 

  118. Heck AM, DeWitt BA, Lukes AL. Potential interactions between alternative therapies and warfarin. Am J Health Syst Pharm. 2000;57(13):1221–7.

    CAS  PubMed  Google Scholar 

  119. Ouzir M, El Bairi K, Amzazi S. Toxicological properties of fenugreek (Trigonella foenum graecum). Food Chem Toxicol. 2016;96:145–54.

    CAS  PubMed  Google Scholar 

  120. Pignatti S. Florad’ Italia, vol. Vol II. 1st ed. Bologna: Edagricole; 1982. p. 125–6.

    Google Scholar 

  121. Bombardellii E, Morazzoni P. Urtca Dioica L. Fitoterapia. 1997;68:387–402.

    Google Scholar 

  122. Obertreis B, Giller K, Teucher T, Behnke B, Schmitz H. Anti-inflammatory effect of Urtica dioica folia extract in comparison n to caffeic malic acid. Arzneimittelforschung. 1996;46(1):52–6.

    CAS  PubMed  Google Scholar 

  123. Krzeski T, Kazon M, Borkowski A, Witeska A, Kuczera J. Combined extracts of Urtica dioica and Pygeum africanum in the treatment of benign prostatic hyperplasia: double-blind comparison of two doses. Clin Ther. 1993;15(6):1011–20.

    CAS  PubMed  Google Scholar 

  124. Tahri A, Yamani S, Legssyer A, Aziz M, Mekhfi H, Bnouham M, Ziyyat A. Acute diuretic, natriuretic and hypotensive effects of a continuous perfusion of aqueous extract of Urtica dioica in the rat. J Ethnopharmacol. 2000;73(1–2):95–100.

    CAS  PubMed  Google Scholar 

  125. Testai L, Chericoni S, Calderone V, Nencioni G, Nieri P, Morelli I, Martinotti E. Cardiovascular effects of Urtica dioica L. (Urticaceae) roots extracts: in vitro and in vivo pharmacological studies. J Ethnopharmacol. 2002;81(1):105–9.

    PubMed  Google Scholar 

  126. Teucher T, Obertreis B, Ruttkowski T, Schmitz H. Cytokine secretion in whole blood of healthy subjects following oral administration of Urtica dioica L. plant extract. Arzneimittelforschung. 1996;46(9):906–10.

    CAS  PubMed  Google Scholar 

  127. Schulze-Tanzil G, de SP BB, Klingelhoefer S, Scheid A, Shakibaei M. Effects of the antirheumatic remedy hox alpha—a new stinging nettle leaf extract-on matrix metalloproteinases in human chondrocytes in vitro. Histol Histopathol. 2002;17(2):477–85.

    CAS  PubMed  Google Scholar 

  128. Riehemann K, Behnke B, Schulze-Osthoff K. Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-kappaB. FEBS Lett. 1999;442(1):89–94.

    CAS  PubMed  Google Scholar 

  129. Chrubasik JE, Roufogalis BD, Wagner H, Chrubasik S. A comprehensive review on the stinging nettle effect and efficacy profiles. Part II: urticae radix. Phytomedicine. 2007;14(7–8):568–79.

    CAS  PubMed  Google Scholar 

  130. Hartmann RW, Mark M, Soldati F. Inhibition of 5 α-reductase and aromatase by PHL-00801 (Prostatonin®), a combination of PY102 (Pygeum africanum) and UR102 (Urtica dioica) extracts. Phytomedicine. 1996;3(2):121–8.

    CAS  PubMed  Google Scholar 

  131. Nahata A, Dixit VK. Evaluation of 5α-reductase inhibitory activity of certain herbs useful as antiandrogens. Andrologia. 2014;46(6):592–601.

    CAS  PubMed  Google Scholar 

  132. Choi SH, Ahn JB, Kozukue N, Levin CE, Friedman M. Distribution of free amino acids, flavonoids, total phenolics, and antioxidative activities of Jujube (Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea. J Agric Food Chem. 2011;59(12):6594–604.

    CAS  PubMed  Google Scholar 

  133. Chen J, Liu X, Li Z, Qi A, Yao P, Zhou Z, Dong TTX, Tsim KWK. A review of dietary Ziziphus jujuba fruit (jujube): developing health food supplements for brain protection. Evid Based Complement Alternat Med. 2017;2017:3019568.

    PubMed  PubMed Central  Google Scholar 

  134. Yoon JI, Al-Reza SM, Kang SC. Hair growth promoting effect of Zizyphus jujuba essential oil. Food Chem Toxicol. 2010;48(5):1350–4.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anastassakis, K. (2022). A Few More and Recently Reported Herbs. In: Androgenetic Alopecia From A to Z . Springer, Cham. https://doi.org/10.1007/978-3-031-08057-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08057-9_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08056-2

  • Online ISBN: 978-3-031-08057-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics