Skip to main content

Free Fatty Acids

  • Chapter
  • First Online:
Androgenetic Alopecia From A to Z
  • 550 Accesses

Abstract

Products classified as cosmeceuticals [1] are skincare products that lie in a gray area between cosmetics and drugs. Most ingredients have been added to these products based on the theoretical benefits discovered from in vitro studies [2]. Most of these ingredients are of botanical origin, and their use is not supported by evidence-based science [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lupo MP. Cosmeceutical peptides. Dermatol Surg. 2005;31(7 Pt 2):832–6.

    CAS  PubMed  Google Scholar 

  2. Thornfeldt CR. Cosmeceuticals: separating fact from voodoo science. Skinmed. 2005;4(4):214–20.

    PubMed  Google Scholar 

  3. Thornfeldt C. Cosmeceuticals containing herbs: fact, fiction, and future. Dermatol Surg. 2005;31(7 Pt 2):873–80.

    CAS  PubMed  Google Scholar 

  4. Newburger AE. Cosmeceuticals: myths and misconceptions. Clin Dermatol. 2009;27(5):446–52.

    PubMed  Google Scholar 

  5. Draelos ZD. The cosmeceutical realm. Clin Dermatol. 2008;26(6):627–32.

    PubMed  Google Scholar 

  6. Gao XH, Zhang L, Wei H, Chen HD. Efficacy and safety of innovative cosmeceuticals. Clin Dermatol. 2008;26(4):367–74.

    PubMed  Google Scholar 

  7. Zussman J, Ahdout J, Kim J. Vitamins and photoaging: do scientific data support their use? J Am Acad Dermatol. 2010;63(3):507–25.

    CAS  PubMed  Google Scholar 

  8. IUPAC. Compendium of chemical terminology (2nd ed.). International Union of Pure and Applied Chemistry. 1997. ISBN 0-52151150-X. Retrieved 31 Oct 2007

    Google Scholar 

  9. Nieman C. influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol Rev. 1954;18(2):147–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kabara JJ, Swieczkowski DM, Conley AJ, truant JP. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother. 1972;2(1):23–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Morello AM, Downing DT, Strauss JS. Octadecadienoic acids in the skin surface lipids of acne patients and normal subjects. J Invest Dermatol. 1976;66(5):319–23.

    CAS  PubMed  Google Scholar 

  12. Namazi MR. Further insight into the pathomechanism of acne by considering the 5-alpha-reductase inhibitory effect of linoleic acid. Int J Dermatol. 2004;43(9):701.

    CAS  PubMed  Google Scholar 

  13. Heczko PB, Lütticken R, Hryniewicz W, Neugebauer M, Pulverer G. Susceptibility of Staphylococcus aureus and group A, B, C, and G streptococci to free fatty acids. J Clin Microbiol. 1979;9(3):333–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Speert DP, Wannamaker LW, Gray ED, Clawson CC. Bactericidal effect of oleic acid on group A streptococci: mechanism of action. Infect Immun. 1979;26(3):1202–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Knapp HR, Melly MA. Bactericidal effects of polyunsaturated fatty acids. J Infect Dis. 1986;154(1):84–94.

    CAS  PubMed  Google Scholar 

  16. Georgel P, Crozat K, Lauth X, et al. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria. Infect Immun. 2005;73(8):4512–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kitahara T, Koyama N, Matsuda J, Aoyama Y, Hirakata Y, Kamihira S, et al. Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2004;27:1321–6.

    CAS  PubMed  Google Scholar 

  18. Rouse MS, Rotger M, Piper KE, Steckelberg JM, Scholz M, Andrews J, Patel R. Invitro and in vivo evaluations of the activities of lauric acid monoester formulations against Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49(8):3187–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Skrivanov E, Marounek M, Dlouh G, Kanka J. Susceptibility of Clostridium perfringens to C-C fatty acids. Lett Appl Microbiol. 2005;41(1):77–81.

    Google Scholar 

  20. Ziboh VA, Miller CC, Cho Y. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of anti-inflammatory and antiproliferative metabolites. Am J Clin Nutr. 2000;71(1 Suppl):361S–6S.

    CAS  PubMed  Google Scholar 

  21. Holland KT, Ingham E, Cunliffe WJ. A review, the microbiology of acne. J Appl Bacteriol. 1981;51(2):195–215.

    CAS  PubMed  Google Scholar 

  22. Gallo RL, Huttner KM. Antimicrobial peptides: an emerging concept in cutaneous biology. J invest Dermatol. 1998;111(5):739–43.

    CAS  PubMed  Google Scholar 

  23. Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res. 2008;49(1):4–11.

    CAS  PubMed  Google Scholar 

  24. Fernandez-Lopez R, Machn C, et al. Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology. 2005;151(Pt 11):3517–26.

    CAS  PubMed  Google Scholar 

  25. Bach AC, Babayan VK. Medium-chain triglycerides: an update. Am J Clin Nutr. 1982;36(5):950–62.

    CAS  PubMed  Google Scholar 

  26. Kitahara T, Koyama N, Matsuda J, Aoyama Y, Hirakata Y, Kamihira S, Kohno S, Nakashima M, Sasaki H. Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2004;27(9):1321–6.

    CAS  PubMed  Google Scholar 

  27. Nakatsuji T, Kao MC, Fang JY, Zouboulis CC, Zhang L, Gallo RL, Huang CM. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol. 2009;129(10):2480–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Charakida A, Charakida M, Chu AC. Double-blind, randomized, placebo-controlled study of a lotion containing triethyl citrate and ethyl linoleate in the treatment of acne vulgaris. Br J Dermatol. 2007;157(3):569–74.

    CAS  PubMed  Google Scholar 

  29. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85(6):1629–42.

    CAS  PubMed  Google Scholar 

  30. Morganti P, Berardesca E, Guarneri B, et al. Topical clindamycin 1% vs. linoleic acidrich phosphatidylcholine and nicotinamide 4% in the treatment of acne: a multicentre-randomized trial. Int J Cosmet Sci. 2011;33(5):467–76.

    CAS  PubMed  Google Scholar 

  31. Watanabe S, Tani T, Watanabe S, Seno M. Effects of free fatty acids on the binding of steroid hormones to bovine serum albumin. Lipids. 1990;25(10):633–8.

    CAS  PubMed  Google Scholar 

  32. Watanabe S, Sato T. effects of free fatty acids on the binding of bovine and human serum albumin with steroid hormones. Biochim Biophys Acta. 1996;1289(3):385–96.

    PubMed  Google Scholar 

  33. Liang T, Liao S. Inhibition of steroid 5 alpha-reductase by specific aliphatic unsaturated fatty acids. Biochem J. 1992;285(Pt 2):557–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang T, Liao S. Growth suppression of hamster flank organs by topical application of gamma-linolenic and other fatty acid inhibitors of 5alpha-reductase. J Invest Dermatol. 1997;109(2):152–7.

    CAS  PubMed  Google Scholar 

  35. Liu J, Shimizu K, Kondo R. Anti-androgenic activity of fatty acids. Chem Biodivers. 2009;6(4):503–12.

    CAS  PubMed  Google Scholar 

  36. Raynaud JP, Cousse H, Martin PM. Inhibition of type 1 and type 2 5alpha-reductase activity by free fatty acids, active ingredients of Permixon. J Steroid Biochem Mol Biol. 2002;82(2–3):233–9.

    CAS  PubMed  Google Scholar 

  37. Abe M, Ito Y, Suzuki A, Onoue S, Noguchi H, Yamada S. Isolation and pharmacological characterization of fatty acids from saw palmetto extract. Anal Sci. 2009;25(4):553–7.

    CAS  PubMed  Google Scholar 

  38. Abe M, Ito Y, Oyunzul L, Oki-Fujino T, Yamada S. Pharmacologically relevant receptor binding characteristics and 5alphareductase inhibitory activity of free fatty acids contained in saw palmetto extract. Biol Pharm Bull. 2009;32(4):646–50.

    CAS  PubMed  Google Scholar 

  39. Fujita R, Liu J, Shimizu K, Konishi F, Noda K, Kumamoto S, Ueda C, Tajiri H, Kaneko S, Suimi Y, Kondo R. Anti-androgenic activities of Ganoderma lucidum. J Ethnopharmacol. 2005;102(1):107–12.

    PubMed  Google Scholar 

  40. Suzuki M, Ito Y, Fujino T, Abe M, Umegaki K, Onoue S, Noguchi H, Yamada S. Pharmacological effects of saw palmetto extract in the lower urinary tract. Acta Pharmacol Sin. 2009;30(3):227–81.

    PubMed  Google Scholar 

  41. Matsuda H, Yamazaki M, Naruo S, Asanuma Y, Kubo M. Anti-androgenic and hair growth promoting activities of Lygodii spora (spore of Lygodium japonicum) I. active constituents inhibiting testosterone 5alpha-reductase. Biol Pharm Bull. 2002;25(5):622–6.

    CAS  PubMed  Google Scholar 

  42. Pham H, Ziboh VA. 5 Alpha-reductase-catalyzed conversion of testosterone to dihydrotestosterone is increased in prostatic adenocarcinoma cells: suppression by 15-lipoxygenase metabolites of gamma-linolenic and eicosapentaenoic acids. J Steroid Biochem Mol Biol. 2002;82(4–5):393–400.

    CAS  PubMed  Google Scholar 

  43. Giltay EJ, Geleijnse JM, Heijboer AC, de Goede J, Oude Griep LM, Blankenstein MA, Kromhout D. No effects of n-3 fatty acid supplementation on serum total testosterone levels in older men: the alpha omega trial. Int J Androl. 2012;35(5):680–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Calder PC. Dietary modification of inflammation with lipids. Proc Nutr Soc. 2002;61(3):345–58.

    CAS  PubMed  Google Scholar 

  45. Calder PC. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6 Suppl):1505S–19S.

    CAS  PubMed  Google Scholar 

  46. Ziboh VA. Prostaglandins, leukotrienes, and hydroxy fatty acids in epidermis. Semin Dermatol. 1992;11(2):114–20.

    CAS  PubMed  Google Scholar 

  47. Ziboh VA. The significance of polyunsaturated fatty acids in cutaneous biology. Lipids. 1996:S249–53.

    Google Scholar 

  48. Ziboh VA, Cho Y, Mani I, Xi S. Biological significance of essential fatty acids/prostanoids/lipoxygenase-derived monohydroxy fatty acids in the skin. Arch Pharm Res. 2002;25(6):747–58.

    CAS  PubMed  Google Scholar 

  49. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr. 2002;21(6):495–505.

    CAS  PubMed  Google Scholar 

  50. Fetterman JW Jr, Zdanowicz MM. Therapeutic potential of n-3 polyunsaturated fatty acids in disease. Am J Health Syst Pharm. 2009;66(13):1169–79.

    CAS  PubMed  Google Scholar 

  51. Darlington LG. Do diets rich in polyunsaturated fatty acids affect disease activity in rheumatoid arthritis? Ann Rheum Dis. 1988;47(2):169–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bassaganya-Riera J, Hontecillas R. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2010;13(5):569–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamamoto T, Shiraki M. Anti-inflammatory effect of conjugated linoleic acid in patients with Crohn’s disease. Clin Nutr. 2013;32(1):147.

    CAS  PubMed  Google Scholar 

  54. Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010;7(3):e1000252.

    PubMed  PubMed Central  Google Scholar 

  55. Vang K, Ziboh VA. 15-lipoxygenase metabolites of gamma-linolenic acid/eicosapentaenoic acid suppress growth and arachidonic acid metabolism in human prostatic adenocarcinoma cells: possible implications of dietary fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2005;72(5):363–72.

    CAS  PubMed  Google Scholar 

  56. Cunnane SC, Anderson MJ. Pure linoleate deficiency in the rat: influence on growth, accumulation of n-6 polyunsaturates, and [1-14C]linoleate oxidation. J Lipid Res. 1997;38(4):805–12.

    CAS  PubMed  Google Scholar 

  57. Munkhbayar S, Jang S, Cho AR, Choi SJ, Shin CY, Eun HC, Kim KH, Kwon O. Role of arachidonic acid in promoting hair growth. Ann Dermatol. 2016;28(1):55–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Skolnik P, Eaglstein WH, Ziboh VA. Human essential fatty acid deficiency: treatment by topical application of linoleic acid. Arch Dermatol. 1977;113(7):939–41.

    CAS  PubMed  Google Scholar 

  59. Alex Khadavi, MD, et al. Clinical evaluation of local treatment with Revivogen for the treatment of men and women with androgenetic alopecia, 2004.

    Google Scholar 

  60. Littman AJ, White E. Reliability and validity of self-reported male balding patterns for use in epidemiologic studies. Ann Epidemiol. 2005;15(10):771–2.

    PubMed  Google Scholar 

  61. Taylor R, Matassa J, Leavy JE, Fritschi L. Validity of self reported male balding patterns in epidemiological studies. BMC Public Health. 2004;13(4):60.

    Google Scholar 

  62. Olsen EA, Dunlap FE, Funicella T, Koperski JA, Swinehart JM, Tschen EH, Trancik RJ. A randomized clinical trial of 5% topical minoxidil versus 2% topical minoxidil and placebo in the treatment of androgenetic alopecia in men. J Am Acad Dermatol. 2002;47(3):377–85.

    PubMed  Google Scholar 

  63. Study Director: Franck Juchaux. STUDY REPORT AD070315B-2. Effects of Revivogen scalp therapy on testosterone metabolism in reconstructed human epidermis. 2007., October 18, 2007

    Google Scholar 

  64. Bernard FX, Barrault C, et al. Expression of type 1 5alpha-reductase and metabolism of testosterone in reconstructed human epidermis (SkinEthic®): a new model for screening skin-targeted androgen modulators. Int J Cosmet Sci. 2000;22(6):397–407.

    CAS  PubMed  Google Scholar 

  65. Le Floc’h C, Cheniti A, Connétable S, Piccardi N, Vincenzi C, Tosti A. Effect of a nutritional supplement on hair loss in women. J Cosmet Dermatol. 2015;14(1):76–82.

    PubMed  Google Scholar 

  66. Van Zuuren EJ, Fedorowicz Z, Schoones J. Interventions for female pattern hair loss. Cochrane Database Syst Rev. 2016;26(5):CD007628.

    Google Scholar 

  67. Kanti V, Messenger A, Dobos G, Reygagne P, Finner A, Blumeyer A, Trakatelli M, Tosti A, Del Marmol V, Piraccini BM, Nast A, Blume-Peytavi U. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men—short version. J Eur Acad Dermatol Venereol. 2018;32(1):11–22.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anastassakis, K. (2022). Free Fatty Acids . In: Androgenetic Alopecia From A to Z . Springer, Cham. https://doi.org/10.1007/978-3-031-08057-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08057-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08056-2

  • Online ISBN: 978-3-031-08057-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics