Skip to main content

In Silico Drug Repositioning for COVID-19: Progress and Challenges

  • Chapter
  • First Online:
Frontiers of COVID-19

Abstract

The COVID-19 pandemic caused by SARS-CoV-2 has shown a rapid increase in the number of infected patients with a remarkable mortality rate, making it a global public health concern. Because there is currently no specific anti-viral drug for the treatment of COVID-19, repurposing of already approved drugs for other diseases may be explored. Drug repurposing has become a promising approach due to the opportunity to reduce development timelines and overall costs. In this chapter, we will discuss various computational drug repositioning strategies, the current COVID-19 treatment scenario, and challenges to the correct interpretation of existing preclinical/clinical evidence, as well as the generation of new evidence related to drug repurposing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saini M, Parihar N, Soni SL, Sharma V. Drug repurposing: an overview. Asian J Pharm Res Dev. 2020;8(4):194–212.

    CAS  Google Scholar 

  2. Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discovery. 2020;15(4):397–401.

    Article  Google Scholar 

  3. Poduri R. Pharmaceutical industry, academia, regulatory authorities and end user collaboration in successful drug discovery and development. In: Drug Discovery and Development: From Targets and Molecules to Medicines. Singapore: Springer; 2021. p. 465–71.

    Chapter  Google Scholar 

  4. Sonaye HV, Sheikh RY, Doifode CA. Drug repurposing: iron in the fire for older drugs. Biomed Pharmacother. 2021;1(141):111638.

    Article  CAS  Google Scholar 

  5. Shyr ZA, Gorshkov K, Chen CZ, Zheng W. Drug discovery strategies for SARS-CoV-2. J Pharmacol Exp Ther. 2020;375(1):127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galindez G, Matschinske J, Rose TD, Sadegh S, Salgado-Albarrán M, Späth J, Baumbach J, Pauling JK. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nat Comput Sci. 2021;1(1):33–41.

    Article  Google Scholar 

  7. Garrison LP Jr, Towse A, Bresnahan BW. Assessing a structured, quantitative health outcomes approach to drug risk-benefit analysis. Health Aff. 2007;26(3):684–95.

    Article  Google Scholar 

  8. Ross JS, Mulvey GK, Hines EM, Nissen SE, Krumholz HM. Trial publication after registration in ClinicalTrials. Gov: a cross-sectional analysis. PLoS Med. 2009;6(9):e1000144.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203–14.

    Article  CAS  PubMed  Google Scholar 

  10. Sultana J, Crisafulli S, Gabbay F, Lynn E, Shakir S, Trifirò G. Challenges for drug repurposing in the COVID-19 pandemic era. Front Pharmacol. 2020;6(11):1657.

    Google Scholar 

  11. Chong CR, Sullivan DJ. New uses for old drugs. Nature. 2007;448(7154):645–6.

    Article  CAS  PubMed  Google Scholar 

  12. Eichler HG, Pignatti F, Flamion B, Leufkens H, Breckenridge A. Balancing early market access to new drugs with the need for benefit/risk data: a mounting dilemma. Nat Rev Drug Discov. 2008;7(10):818–26.

    Article  CAS  PubMed  Google Scholar 

  13. Eichler HG, Oye K, Baird LG, Abadie E, Brown J, Drum CL, Ferguson J, Garner S, Honig P, Hukkelhoven M, Lim JC. Adaptive licensing: taking the next step in the evolution of drug approval. Clinical Pharmacology & Therapeutics. 2012;91(3):426–37.

    Article  Google Scholar 

  14. Eichler HG, Bloechl-Daum B, Brasseur D, Breckenridge A, Leufkens H, Raine J, Salmonson T, Schneider CK, Rasi G. The risks of risk aversion in drug regulation. Nat Rev Drug Discov. 2013;12:907–16.

    Article  CAS  PubMed  Google Scholar 

  15. Sarkar C, Mondal M, Torequl Islam M, Martorell M, Docea AO, Maroyi A, Sharifi-Rad J, Calina D. Potential therapeutic options for COVID-19: current status, challenges, and future perspectives. Front Pharmacol. 2020;15(11):1428.

    Google Scholar 

  16. Baumfeld Andre E, Reynolds R, Caubel P, Azoulay L, Dreyer NA. Trial designs using real-world data: the changing landscape of the regulatory approval process. Pharmacoepidemiol Drug Saf. 2020;29(10):1201–12.

    Article  PubMed  Google Scholar 

  17. Schneeweiss S, Gagne JJ, Glynn RJ, Ruhl M, Rassen JA. Assessing the comparative effectiveness of newly marketed medications: methodological challenges and implications for drug development. Clin Pharmacol Therapeut. 2011;90(6):777–90.

    Article  CAS  Google Scholar 

  18. Sharma MR, Schilsky RL. Role of randomized phase III trials in an era of effective targeted therapies. Nat Rev Clin Oncol. 2012;9(4):208.

    Article  CAS  Google Scholar 

  19. Raphael MJ, Gyawali B, Booth CM. Real-world evidence and regulatory drug approval. Nat Rev Clin Oncol. 2020;17(5):271–2.

    Article  PubMed  Google Scholar 

  20. Swift B, Jain L, White C, Chandrasekaran V, Bhandari A, Hughes DA, Jadhav PR. Innovation at the intersection of clinical trials and real-world data science to advance patient care. Clin Transl Sci. 2018;11(5):450–60.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Angus DC. Optimizing the trade-off between learning and doing in a pandemic. JAMA. 2020;323(19):1895–6.

    Article  CAS  PubMed  Google Scholar 

  22. Prasad S, McOsker C, Foley M. Filling the drug discovery abyss. Drug Discovery. 2016;17:25.

    Google Scholar 

  23. Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12(1):2694–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ou-Yang SS, Lu JY, Kong XQ, Liang ZJ, Luo C, Jiang H. Computational drug discovery. Acta Pharmacol Sin. 2012 Sep;33(9):1131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar N, Hendriks BS, Janes KA, de Graaf D, Lauffenburger DA. Applying computational modeling to drug discovery and development. Drug Discov Today. 2006;11(17–18):806–11.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar S. Online resource and tools for the development of drugs against novel coronavirus. In: Silico Modeling of Drugs Against Coronaviruses. Methods in Pharmacology and Toxicology. New York, NY: Humana; 2021. https://doi.org/10.1007/7653_2020_53.

    Chapter  Google Scholar 

  27. Kumar S. Protein–Protein Interaction Network for the Identification of New Targets Against Novel Coronavirus. In: Silico Modeling of Drugs Against Coronaviruses. Methods in Pharmacology and Toxicology. New York, NY: Humana; 2021. https://doi.org/10.1007/7653_2020_62.

    Chapter  Google Scholar 

  28. Kumar S. COVID-19: A drug repurposing and biomarker identification by using comprehensive gene-disease associations through protein-protein interaction network analysis. Preprints. 2020:2020030440. https://doi.org/10.20944/preprints202003.0440.v1.

  29. Nana KS, Karuppanan K, Kumar S. Identification of common key genes and pathways between Covid-19 and lung cancer by using protein-protein interaction network analysis. bioRxiv. 2021; https://doi.org/10.1101/2021.02.16.431364

  30. Kumar S, Mathavan S, Jin WJ, Azman NA, Subramanaiam D, Zainalabidin NA, Lingadaran D, Sattar ZB, Manickam DL, Anbananthan PS, Taqiyuddin JA. COVID-19 Vaccine Candidates by Identification of B and T Cell Multi-Epitopes Against SARS-CoV-2. Preprints 2020. https://doi.org/10.20944/preprints202008.0092.v1.

  31. Mathavan S, Kumar S. Evaluation of the Effect of D614G, N501Y and S477N Mutation in SARS-CoV-2 through Computational Approach. Preprints 2020. https://doi.org/10.20944/preprints202012.0710.v1.

  32. Kumar S, Ramanujam M. Computational prediction of novel broad-spectrum drug targets against vibrio cholerae by integrated genomics and proteomics approach. Malaysian J Med Health Sci. 2020;16(2):99–104.

    Google Scholar 

  33. Kumar S. In Silico Identification of Novel Tuberculosis Drug Targets in Mycobacterium tuberculosisP450 Enzymes by Interaction Study with Azole Drugs. Preprints 2020.

    Google Scholar 

  34. Kumar S. Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. BMC Res Notes. 2015;8(1):1.

    Article  CAS  Google Scholar 

  35. Karaman B, Sippl W. Computational drug repurposing: current trends. Curr Med Chem. 2019;26(28):5389–409.

    Article  CAS  PubMed  Google Scholar 

  36. Oprea TI, Nielsen SK, Ursu O, Yang JJ, Taboureau O, Mathias SL, Kouskoumvekaki I, Sklar LA, Bologa CG. Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Mol inform. 2011;30(2–3):100–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xue H, Li J, Xie H, Wang Y. Review of drug repositioning approaches and resources. Int J Biol Sci. 2018;14(10):1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mazzarella R, Webb C. Computational and bioinformatic strategies for drug repositioning. Drug Repositioning. 2012;9:91.

    Google Scholar 

  39. Deftereos SN, Andronis C, Friedla EJ, Persidis A, Persidis A. Drug repurposing and adverse event prediction using high-throughput literature analysis. Wiley Interdiscip Rev Syst Biol Med. 2011;3(3):323–34.

    Article  CAS  PubMed  Google Scholar 

  40. Rebholz-Schuhmann D, Oellrich A, Hoehndorf R. Text-mining solutions for biomedical research: enabling integrative biology. Nat Rev Genet. 2012;13(12):829–39.

    Article  CAS  PubMed  Google Scholar 

  41. Andronis C, Sharma A, Virvilis V, Deftereos S, Persidis A. Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinform. 2011;12(4):357–68.

    Article  CAS  PubMed  Google Scholar 

  42. Loging W, Rodriguez-Esteban R, Hill J, Freeman T, Miglietta J. Cheminformatic/bioinformatic analysis of large corporate databases: application to drug repurposing. Drug Discov Today Ther Strateg. 2011;8(3–4):109–16.

    Article  Google Scholar 

  43. Nabirotchkin S, Peluffo AE, Rinaudo P, Yu J, Hajj R, Cohen D. Next-generation drug repurposing using human genetics and network biology. Curr Opin Pharmacol. 2020;51:78–92.

    Article  CAS  PubMed  Google Scholar 

  44. Vilar S, Hripcsak G. The role of drug profiles as similarity metrics: applications to repurposing, adverse effects detection and drug–drug interactions. Brief Bioinform. 2017;18(4):670–81.

    CAS  PubMed  Google Scholar 

  45. Grenier L, Hu P. Computational drug repurposing for inflammatory bowel disease using genetic information. Comput Struct Biotechnol J. 2019;17:127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamid JS, Hu P, Roslin NM, Ling V, Greenwood CM, Beyene J. Data integration in genetics and genomics: methods and challenges. Hum Genomics Proteomics. 2009;2009:869093.

    PubMed  PubMed Central  Google Scholar 

  47. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):1–5.

    Article  CAS  Google Scholar 

  48. Michnick SW. The connectivity map. Nat Chem Biol. 2006;2(12):663–4.

    Article  CAS  PubMed  Google Scholar 

  49. Reka AK, Kuick R, Kurapati H, Standiford TJ, Omenn GS, Keshamouni VG. Identifying inhibitors of epithelial-mesenchymal transition by connectivity map–based systems approach. J Thorac Oncol. 2011;6(11):1784–92.

    Article  PubMed  PubMed Central  Google Scholar 

  50. De Bastiani MA, Pfaffenseller B, Klamt F. Master regulators connectivity map: a transcription factors-centered approach to drug repositioning. Front Pharmacol. 2018;9:697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Koehler AN. Microarrays in chemical biology. Wiley Encyclopedia Chem Biol. 2007;14:1.

    Google Scholar 

  52. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.

    Article  CAS  PubMed  Google Scholar 

  53. Eckhardt M, Hultquist JF, Kaake RM, Hüttenhain R, Krogan NJ. A systems approach to infectious disease. Nat Rev Genet. 2020;21(6):339–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet. 2001;2(1):343–72.

    Article  CAS  PubMed  Google Scholar 

  55. Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási AL, Loscalzo J. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):1–2.

    Article  CAS  Google Scholar 

  56. Sadegh S, Matschinske J, Blumenthal DB, Galindez G, Kacprowski T, List M, Nasirigerdeh R, Oubounyt M, Pichlmair A, Rose TD, Salgado-Albarrán M. Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing. Nat Commun. 2020;11(1):1–9.

    Article  CAS  Google Scholar 

  57. Surabhi S, Singh BK. Computer aided drug design: an overview. J Drug Deliv Ther. 2018;8(5):504–9.

    Article  CAS  Google Scholar 

  58. Abdolmaleki A, Ghasemi B, J, Ghasemi F. Computer aided drug design for multi-target drug design: SAR/QSAR, molecular docking and pharmacophore methods. Curr Drug Targets. 2017;18(5):556–75.

    Article  CAS  PubMed  Google Scholar 

  59. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020;57:279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manivannan E, Karthikeyan C, Moorthy NS, Chaturvedi SC. The rise and fall of chloroquine/hydroxychloroquine as compassionate therapy of COVID-19. Front Pharmacol. 2021;12:1057.

    Article  CAS  Google Scholar 

  61. Axfors C, Schmitt AM, Janiaud P, van’t Hooft J, Abd-Elsalam S, Abdo EF, Abella BS, Akram J, Amaravadi RK, Angus DC, Arabi YM. Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nat Commun. 2021;12(1):1–3.

    CAS  Google Scholar 

  62. Gasmi A, Peana M, Noor S, Lysiuk R, Menzel A, Benahmed AG, Bjørklund G. Chloroquine and hydroxychloroquine in the treatment of COVID-19: the never-ending story. Appl Microbiol Biotechnol. 2021;30:1–1.

    Google Scholar 

  63. Chen Y, Li MX, Lu GD, Shen HM, Zhou J. Hydroxychloroquine/chloroquine as therapeutics for COVID-19: truth under the mystery. Int J Biol Sci. 2021;17(6):1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patel TK, Patel PB, Barvaliya M, Saurabh MK, Bhalla HL, Khosla PP. Efficacy and safety of lopinavir-ritonavir in COVID-19: a systematic review of randomized controlled trials. J Infect Public Health. 2021;14:740–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Young B, Tan TT, Leo YS. The place for remdesivir in COVID-19 treatment. Lancet Infect Dis. 2021;21(1):20.

    Article  CAS  PubMed  Google Scholar 

  66. Horby PW, Mafham M, Bell JL, Linsell L, Staplin N, Emberson J, Palfreeman A, Raw J, Elmahi E, Prudon B, Green C. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2020;396(10259):1345–52.

    Article  CAS  Google Scholar 

  67. Dabbous HM, Abd-Elsalam S, El-Sayed MH, Sherief AF, Ebeid FF, Abd El Ghafar MS, Soliman S, Elbahnasawy M, Badawi R, Tageldin MA. Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. Arch Virol. 2021;166(3):949–54.

    Article  CAS  PubMed  Google Scholar 

  68. Butler CC, van der Velden AW, Bongard E, Saville BR, Holmes J, Coenen S, Cook J, Francis NA, Lewis RJ, Godycki-Cwirko M, Llor C. Oseltamivir plus usual care versus usual care for influenza-like illness in primary care: an open-label, pragmatic, randomised controlled trial. Lancet. 2020;395(10217):42–52.

    Article  CAS  PubMed  Google Scholar 

  69. Hassanipour S, Arab-Zozani M, Amani B, Heidarzad F, Fathalipour M, Martinez-de-Hoyo R. The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci Rep. 2021;11(1):1.

    Article  CAS  Google Scholar 

  70. Rosa SG, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Publica. 2020;8(44):e40.

    Google Scholar 

  71. Thomas E, Ghany MG, Liang TJ. The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir Chem Chemother. 2012;23(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  72. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Yu T. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ali MJ, Hanif M, Haider MA, Ahmed MU, Sundas FN, Hirani A, Khan IA, Anis K, Karim AH. Treatment options for COVID-19: a review. Front Med. 2020;31(7):480.

    Article  Google Scholar 

  74. Singh AK, Majumdar S, Singh R, Misra A. Role of corticosteroid in the management of COVID-19: a systemic review and a Clinician’s perspective. Diabetes Metab Syndr Clin Res Rev. 2020;14(5):971–8.

    Article  CAS  Google Scholar 

  75. Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, Criner GJ, Kaplan-Lewis E, Baden R, Pandit L, Cameron ML. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;384(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  76. Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther. 2013;93(4):335–41.

    Article  CAS  PubMed  Google Scholar 

  77. Jin G, Wong ST. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today. 2014;19(5):637–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S. (2022). In Silico Drug Repositioning for COVID-19: Progress and Challenges. In: Adibi, S., Griffin, P., Sanicas, M., Rashidi, M., Lanfranchi, F. (eds) Frontiers of COVID-19. Springer, Cham. https://doi.org/10.1007/978-3-031-08045-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08045-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08044-9

  • Online ISBN: 978-3-031-08045-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics