Skip to main content

OSM-GAN: Using Generative Adversarial Networks for Detecting Change in High-Resolution Spatial Images

Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT,volume 143)

Abstract

Detecting changes to built environment objects such as buildings/roads/etc. in aerial/satellite (spatial) imagery is necessary to keep online maps and various value-added LBS applications up-to-date. However, recognising such changes automatically is not a trivial task, and there are many different approaches to this problem in the literature. This paper proposes an automated end-to-end workflow to address this problem by combining OpenStreetMap (OSM) vectors of building footprints with a machine learning Generative Adversarial Network (GAN) model - where two neural networks compete to become more accurate at predicting changes to building objects in spatial imagery. Notably, our proposed OSM-GAN architecture achieved over 88% accuracy predicting/detecting building object changes in high-resolution spatial imagery of Dublin city centre.

Keywords

  • Change detection
  • Remote sensing
  • OpenStreetMap
  • Generative Adversarial Networks
  • GIS

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/phillipi/pix2pix.

  2. 2.

    https://wiki.openstreetmap.org/wiki/Overpass_API.

  3. 3.

    https://docs.opencv.org/4.5.2/.

  4. 4.

    https://numpy.org/.

  5. 5.

    https://www.osi.ie/about/open-data/.

  6. 6.

    https://www.ichec.ie/about/infrastructure/kay.

References

  1. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  2. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  3. Saqur, R., Vivona, S.: CapsGAN: using dynamic routing for generative adversarial networks. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 944, pp. 511–525. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17798-0_41

    CrossRef  Google Scholar 

  4. Engel, J., Agrawal, K.K., Chen, S., Gulrajani, I., Donahue, C., Roberts, A.: GANSynth: adversarial neural audio synthesis. arXiv preprint arXiv:1902.08710 (2019)

  5. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalisation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  6. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  7. Benhenda, M.: ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity? arXiv preprint arXiv:1708.08227 (2017)

  8. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  9. Gong, M., Su, L., Jia, M., Chen, W.: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst. 22(1), 98–109 (2013)

    CrossRef  Google Scholar 

  10. Yousif, O., Ban, Y.: Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Trans. Geosci. Remote Sens. 51(4), 2032–2041 (2013)

    CrossRef  Google Scholar 

  11. de Jong, K.L., Bosman, A.S.: Unsupervised change detection in satellite images using convolutional neural networks. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, July 2019

    Google Scholar 

  12. Papadomanolaki, M., Verma, S., Vakalopoulou, M., Gupta, S., Karantzalos, K.: Detecting urban changes with recurrent neural networks from multitemporal Sentinel-2 data. In: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 214–217. IEEE, July 2019

    Google Scholar 

  13. Albrecht, C.M., et al.: Change detection from remote sensing to guide OpenStreetMap labeling. ISPRS Int. J. Geo Inf. 9(7), 427 (2020)

    CrossRef  Google Scholar 

  14. Wang, X., Yan, H., Huo, C., Yu, J., Pant, C.: Enhancing Pix2Pix for remote sensing image classification. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2332–2336. IEEE, August 2018

    Google Scholar 

  15. Lee, M., Seok, J.: Controllable generative adversarial network. arXiv preprint arXiv:1708.00598 (2017)

  16. Lebedev, M.A., Vizilter, Y.V., Vygolov, O.V., Knyaz, V.A., Rubis, A.Y.: Change detection in remote sensing images using conditional adversarial networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42(2) (2018)

    Google Scholar 

  17. OpenStreetMap (2021). https://openstreetmap.org/. Accessed 22 Apr 2021

  18. Overpass-turbo.eu (2021). https://overpass-turbo.eu/. Accessed 22 Apr 2021

  19. Code of conduct: OpenStreetMap (2021). https://wiki.openstreetmap.org/wiki/Code_of_conduct/. Accessed 22 Apr 2021

  20. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29, pp. 2234–2242 (2016)

    Google Scholar 

  21. Nunn, E.J., Khadivi, P., Samavi, S.: Compound Frechet inception distance for quality assessment of GAN created images. arXiv preprint arXiv:2106.08575 (2021)

Download references

Acknowledgments

The authors wish to thank all contributors involved with the OpenStreetMap project. This research is funded by Technological University Dublin College of Arts and Tourism, SEED FUNDING INITIATIVE 2019–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasith Niroshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niroshan, L., Carswell, J.D. (2022). OSM-GAN: Using Generative Adversarial Networks for Detecting Change in High-Resolution Spatial Images. In: Bourennane, S., Kubicek, P. (eds) Geoinformatics and Data Analysis. ICGDA 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-031-08017-3_9

Download citation