Skip to main content

Model-Based Approaches to Multi-attribute Diverse Matching

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2022)

Abstract

Bipartite b-matching is a classical model that is used for utility maximization in various applications such as marketing, healthcare, education, and general resource allocation. Multi-attribute diverse weighted bipartite b-matching (MDWBM) balances the quality of the matching with its diversity. The recent paper by Ahmadi et al. (2020) introduced the MDWBM but presented an incorrect mixed integer quadra-tic program (MIQP) and a flawed local exchange algorithm. In this work, we develop two constraint programming (CP) models, a binary quadratic programming (BQP) model, and a quadratic unconstrained binary optimization (QUBO) model for both the unconstrained and constrained MDWBM. A thorough empirical evaluation using commercial solvers and specialized QUBO hardware shows that the hardware-based QUBO approach dominates, finding best-known solutions on all tested instances up to an order of magnitude faster than the other approaches. CP is able to achieve better solutions than BQP on unconstrained problems but under-performs on constrained problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The negative submodular diversity is equivalent to the supermodular similarity.

  2. 2.

    https://tidel.mie.utoronto.ca/pubs/Appendix_Matching_CPAIOR22.pdf.

  3. 3.

    We use (4e) instead of (3) according to the superior results in our experiments.

  4. 4.

    All experiments were conducted on the Digital Annealer environment prepared exclusively for the research at the University of Toronto.

References

  1. Ahmadi, S., Ahmed, F., Dickerson, J.P., Fuge, M., Khuller, S.: An algorithm for multi-attribute diverse matching. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), pp. 3–9. AAAI Press (2020)

    Google Scholar 

  2. Ahmed, F., Dickerson, J.P., Fuge, M.: Diverse weighted bipartite b-matching. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 35–41. AAAI Press (2017)

    Google Scholar 

  3. Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber, H.G.: Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7, 48 (2019)

    Article  Google Scholar 

  4. Bagherbeik, M., Ashtari, P., Mousavi, S.F., Kanda, K., Tamura, H., Sheikholeslami, A.: A permutational Boltzmann machine with parallel tempering for solving combinatorial optimization problems. In: Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M., Trautmann, H. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 317–331. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_22

    Chapter  Google Scholar 

  5. Benabbou, N., Chakraborty, M., Ho, X.V., Sliwinski, J., Zick, Y.: Diversity constraints in public housing allocation. In: 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018 (2018)

    Google Scholar 

  6. Bertsimas, D., Papalexopoulos, T., Trichakis, N., Wang, Y., Hirose, R., Vagefi, P.A.: Balancing efficiency and fairness in liver transplant access: tradeoff curves for the assessment of organ distribution policies. Transplantation 104(5), 981–987 (2020)

    Article  Google Scholar 

  7. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336 (1998)

    Google Scholar 

  8. Chen, C., Zheng, L., Srinivasan, V., Thomo, A., Wu, K., Sukow, A.: Conflict-aware weighted bipartite b-matching and its application to e-commerce. IEEE Trans. Knowl. Data Eng. 28(6), 1475–1488 (2016)

    Article  Google Scholar 

  9. Coffrin, C., Nagarajan, H., Bent, R.: Evaluating ising processing units with integer programming. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 163–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9_11

    Chapter  MATH  Google Scholar 

  10. Cohen, E., Senderovich, A., Beck, J.C.: An ising framework for constrained clustering on special purpose hardware. In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp. 130–147. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4_9

    Chapter  Google Scholar 

  11. D-Wave System Inc.: D-wave tabu (2021). https://docs.ocean.dwavesys.com/projects/tabu/en/latest/, Accessed 21 July 2021

  12. Dabiri, K., Malekmohammadi, M., Sheikholeslami, A., Tamura, H.: Replica exchange MCMC hardware with automatic temperature selection and parallel trial. IEEE Trans. Parallel Distrib. Syst. 31(7), 1681–1692 (2020)

    Article  Google Scholar 

  13. Dunning, I., Gupta, S., Silberholz, J.: What works best when? A systematic evaluation of heuristics for Max-Cut and QUBO. INFORMS J. Comput. 30(3), 608–624 (2018)

    Article  MATH  Google Scholar 

  14. Fazliu, Z.L., Chiasserini, C.F., Malandrino, F., Nordio, A.: Graph-based model for beam management in mmwave vehicular networks. In: Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, pp. 363–367 (2020)

    Google Scholar 

  15. Fern, X.Z., Brodley, C.E., et al.: Cluster ensembles for high dimensional clustering: an empirical study. Technical Report CS06-30-02, Oregon State University (2006)

    Google Scholar 

  16. Fujitsu Limited: The third generation of the digital annealer (2021). https://www.fujitsu.com/jp/group/labs/en/documents/about/resources/tech/techintro/3rd-g-da_en.pdf, Accessed 20 Aug 2021

  17. de Givry, S., Schiex, T., Schutt, A., Simonis, H.: Modelling the conference paper assignment problem. In: 19th Workshop on Constraint Modeling and Reformulation, ModRef-20 (2020)

    Google Scholar 

  18. Kadıoğlu, S., Kleynhans, B., Wang, X.: Optimized item selection to boost exploration for recommender systems. In: Stuckey, P.J. (ed.) CPAIOR 2021. LNCS, vol. 12735, pp. 427–445. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78230-6_27

    Chapter  Google Scholar 

  19. Karimzadehgan, M., Zhai, C.: Constrained multi-aspect expertise matching for committee review assignment. In: Proceedings of the 18th ACM conference on Information and knowledge management, pp. 1697–1700 (2009)

    Google Scholar 

  20. Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/s10878-014-9734-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. arXiv preprint arXiv:1207.6083 (2012)

  22. Matsubara, S., et al.: Digital annealer for high-speed solving of combinatorial optimization problems and its applications. In: 2020 25th Asia and South Pacific Design Automation Conference, ASP-DAC, pp. 667–672. IEEE (2020)

    Google Scholar 

  23. Mohseni, M., et al.: Commercialize quantum technologies in five years. Nature News 543(7644), 171 (2017)

    Article  Google Scholar 

  24. Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131(1), 259–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rosenberg, G., Haghnegahdar, P., Goddard, P., Carr, P., Wu, K., De Prado, M.L.: Solving the optimal trading trajectory problem using a quantum annealer. IEEE J. Sel. Top. Signal Process. 10(6), 1053–1060 (2016)

    Article  Google Scholar 

  26. Tran, T.T., et al.: Explorations of quantum-classical approaches to scheduling a mars lander activity problem. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  27. Zhang, J., Lo Bianco, G., Beck, J.C.: MDWBM Instances (2021). https://github.com/JasonZhangjc/mdwbm-instances, Accessed 11 Feb 2022

Download references

Acknowledgement

The authors would like to thank Fujitsu Ltd. and Fujitsu Consulting (Canada) Inc. for providing financial support and access to the Digital Annealer at the University of Toronto. Partial funding for this work was provided by Fujitsu Ltd. and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiachen Zhang , Giovanni Lo Bianco or J. Christopher Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Lo Bianco, G., Beck, J.C. (2022). Model-Based Approaches to Multi-attribute Diverse Matching. In: Schaus, P. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2022. Lecture Notes in Computer Science, vol 13292. Springer, Cham. https://doi.org/10.1007/978-3-031-08011-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08011-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08010-4

  • Online ISBN: 978-3-031-08011-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics