Skip to main content

Data-Driven Disease Progression Modeling

  • Chapter
  • First Online:
Healthcare Information Management Systems

Abstract

This chapter provides a comprehensive overview to data driven disease progression modeling techniques. It adopts a broad approach to disease progression, focusing on all computational methods able to model any temporal aspects of disease progression. Consequently, we have focused on three classes of analysis: staging and trajectory estimation analysis to better understand the course of a disease, predictive classification analysis for important disease related event prediction, and time to event analysis with survival models to estimate when clinically significant events are expected to occur during the progression of a disease. We describe the state of the art in each of these classes, together with discussions on challenges and opportunities for additional research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook SF, Bies RR. Disease progression modeling: key concepts and recent developments. Curr Pharmacol Rep. 2016;2(5):221–30.

    Article  Google Scholar 

  2. Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. Ann Fam Med. 2014;12(6):573–6.

    Article  Google Scholar 

  3. Woodcock J, Woosley R. The FDA critical path initiative and its influence on new drug development. Annu Rev Med. 2008;59(1):1–12. https://doi.org/10.1146/annurev.med.59.090506.155819.

    Article  CAS  Google Scholar 

  4. Bestsennyy O, Chmielewski M, Koffel A, Shah A. The untapped potential of payer care management. McKinsey.

    Google Scholar 

  5. Conrado DJ, Denney WS, Chen D, Ito K. An updated Alzheimer’s disease progression model: incorporating non-linearity, beta regression, and a third-level random effect in NONMEM. J Pharmacokinet Pharmacodyn. 2014;41(6):581–98.

    Article  CAS  Google Scholar 

  6. Holford NH, Peace KE. Results and validation of a population pharmacodynamic model for cognitive effects in Alzheimer patients treated with tacrine. Proc Natl Acad Sci U S A. 1992;89(23):11471–5.

    Article  CAS  Google Scholar 

  7. Romero K, Ito K, Rogers JA, Polhamus D, Qiu R, Stephenson D, Mohs R, Lalonde R, Sinha V, Wang Y, Brown D, Isaac M, Vamvakas S, Hemmings R, Pani L, Bain LJ, Corrigan B. Alzheimer’s disease neuroimaging initiative, and coalition against major diseases. The future is now: model-based clinical trial design for Alzheimer’s disease. Clin Pharmacol Ther. 2015;97(3):210–4.

    Article  CAS  Google Scholar 

  8. Sukkar R, Katz E, Zhang Y, Raunig D, Wyman BT. Disease progression modeling using Hidden Markov Models. In: 2012 annual international conference of the IEEE engineering in medicine and biology society; 2012. p. 2845–8. ISSN: 1558-4615.

    Chapter  Google Scholar 

  9. Liu Y-Y, Ishikawa H, Chen M, Wollstein G, Schuman JS, Rehg JM. Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden markov model. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):444–51.

    Google Scholar 

  10. Kuan WL, Kasis A, Yuan Y, Mason SL, Lazar AS, Barker RA, Goncalves J. Modelling the natural history of Huntington’s disease progression. J Neurol Neurosurg Psychiatry. 2015;86(10):1143–9.

    Article  CAS  Google Scholar 

  11. Sun Z, Ghosh S, Li Y, Cheng Y, Mohan A, Sampaio C, Jianying H. A probabilistic disease progression modeling approach and its application to integrated Huntington’s disease observational data. JAMIA open. 2019;2(1):123–30.

    Article  Google Scholar 

  12. Severson KA, Chahine LM, Smolensky L, Ng K, Jianying H, Ghosh S. Personalized input-output hidden markov models for disease progression modeling. In: Machine learning for healthcare conference. PMLR; 2020. p. 309–30.

    Google Scholar 

  13. Gomeni R, Fava M, Pooled Resource Open-Access ALS Clinical Trials Consortium. Amyotrophic lateral sclerosis disease progression model. Amyotr Lateral Scler Frontotemp Degenerat. 2014;15(1–2):119–29.

    Article  Google Scholar 

  14. Halbersberg D, Lerner B. Temporal modeling of deterioration patterns and clustering for disease prediction of ALS patients. In: 2019 18th IEEE international conference on machine learning and applications (ICMLA). 2019. p. 62–8.

    Google Scholar 

  15. Kwon BC, Anand V, Severson KA, Ghosh S, Sun Z, Frohnert BI, Lundgren M, Ng K. DPVis: visual analytics with hidden Markov models for disease progression pathways. In: IEEE transactions on visualization and computer graphics. 2020. p. 1.

    Google Scholar 

  16. Kwon BC, Achenbach P, Dunne J, Hagopian W, Lundgren M, Mg K, Veijola R, Frohnert B, Anand V. Modeling disease progression trajectories from longitudinal observational data. In: AMIA annual symposium proceedings. 2020.

    Google Scholar 

  17. Futoma J, Sendak M, Cameron B, Heller K. Predicting disease progression with a model for multivariate longitudinal clinical data. In: Machine learning for healthcare conference. PMLR; 2016. p. 42–54.

    Google Scholar 

  18. Wang X, Sontag D, Wang F. Unsupervised learning of disease progression models. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ‘14. New York: Association for Computing Machinery; 2014. p. 85–94.

    Chapter  Google Scholar 

  19. Powell GA, Verma A, Luo Y, Stephens D, Buckeridge D. Modeling chronic obstructive pulmonary disease progression using continuous-time hidden Markov models. Stud Health Technol Inform. 2019;264:920–4.

    Google Scholar 

  20. Liu Y-Y, Li S, Li F, Song L, Rehg JM. Efficient learning of continuous-time hidden Markov models for disease progression. Adv Neural Inf Proces Syst. 2015;28:3599–607.

    Google Scholar 

  21. Lawton M, Tilling K, Robertson N, Tremlett H, Zhu F, Harding K, Oger J, Ben-Shlomo Y. A longitudinal model for disease progression was developed and applied to multiple sclerosis. J Clin Epidemiol. 2015;68(11):1355–65.

    Article  Google Scholar 

  22. Schulam P, Saria S. A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure. In: Proceedings of the 28th international conference on neural information processing systems - vol. 1, NIPS’15, Cambridge, MA, USA. MIT Press; 2015. p. 748–56.

    Google Scholar 

  23. Dürichen R, Pimentel MAF, Clifton L, Schweikard A, Clifton DA. Multitask Gaussian processes for multivariate physiological time-series analysis. IEEE Trans Biomed Eng. 2015;62(1):314–22.

    Article  Google Scholar 

  24. Ghassemi M, MAF P, Naumann T, Brennan T, Clifton DA, Szolovits P, Feng M. A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data. In: Proceedings of the AAAI conference on artificial intelligence; 2015. p. 446–53.

    Google Scholar 

  25. Alaa A, Schaar MVD. Attentive state-space modeling of disease progression. In: NeurIPS. 2019.

    Google Scholar 

  26. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Dis Off J Move Dis Soc. 2010;25(15):2649–53.

    Article  Google Scholar 

  27. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.

    Article  CAS  Google Scholar 

  28. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci. 1999;169(1–2):13–21.

    Article  CAS  Google Scholar 

  29. Goetz CG, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stebbins GT, Stern MB, Tilley BC, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, Van Hilten JJ, LaPelle N. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov Disord. 2007;22(1):41–7. https://movementdisorders.onlinelibrary.wiley.com/doi/pdf/10.1002/mds.21198.

    Article  Google Scholar 

  30. Unified Huntington’s Disease Rating Scale: reliability and consistency. Huntington Study Group. Mov Disord. 1996;11(2):136–42.

    Google Scholar 

  31. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52.

    Article  CAS  Google Scholar 

  32. Kakkanatt C, Benigno M, Jackson VM, Huang PL, Ng K. Curating and integrating user-generated health data from multiple sources to support healthcare analytics. IBM J Res Dev. 2018;62(1):2:1–7. Conference Name: IBM Journal of Research and Development.

    Article  Google Scholar 

  33. ADNI. Alzheimer’s disease neuroimaging initiative.

    Google Scholar 

  34. PPMI. Parkinson’s progression markers initiative.

    Google Scholar 

  35. Atassi N, Berry J, Shui A, Zach N, Sherman A, Sinani E, Walker J, Katsovskiy I, Schoenfeld D, Cudkowicz M, Leitner M. The PRO-ACT database. Neurology. 2014;83(19):1719–25.

    Article  CAS  Google Scholar 

  36. AnswerALS. Data portal.

    Google Scholar 

  37. Johnson AEW, Pollard TJ, Shen L, Lehman L-WH, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Scientific Data. 2016;3(1):160035.

    Article  CAS  Google Scholar 

  38. Roberts S, Osborne M, Ebden M, Reece S, Gibson N, Aigrain S. Gaussian processes for timeseries modelling. Philos Trans Roy Soc Pt A. 2013.

    Google Scholar 

  39. Rabiner L, Juang B. An introduction to hidden Markov models. IEEE ASSP Mag. 1986;3(1):4–16.

    Article  Google Scholar 

  40. Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.

    Google Scholar 

  41. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Statist Soc Ser B (Methodol). 1977;39(1):1–22. https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.25176161.1977.tb01600.x.

    Google Scholar 

  42. Taylor-Robinson D, Archangelidi O, Carr SB, Cosgriff R, Gunn E, Keogh RH, MacDougall A, Newsome S, Schlüter DK, Stanojevic S, Bilton D. Data resource profile: the UK cystic fibrosis registry. Int J Epidemiol. 2018;47(1):9–10.

    Article  Google Scholar 

  43. Hothorn T, Jung HH. RandomForest4Life: a Random Forest for predicting ALS disease progression. Amyotr Lateral Scler Frontotemp Degenerat. 2014;15(5–6):444–52.

    Article  Google Scholar 

  44. Zhou J, Liu J, Narayan VA, Ye J. Modeling disease progression via fused sparse group lasso. In: KDD : proceedings/international conference on knowledge discovery and data mining. 2012. p. 1095–1103.

    Google Scholar 

  45. Zhou J, Yuan L, Liu J, Ye J. A multi-task learning formulation for predicting disease progression. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ‘11. New York: Association for Computing Machinery; 2011. p. 814–22.

    Chapter  Google Scholar 

  46. Pham T, Tran T, Phung D, Venkatesh S. Predicting healthcare trajectories from medical records: a deep learning approach. J Biomed Inform. 2017;69:218–29.

    Article  Google Scholar 

  47. Chakraborty P, Codella J, Madan P, Li Y, Huang H, Park Y, Yan C, Zhang Z, Gao C, Nyemba S, Min X, Basak S, Ghalwash M, Shahn Z, Suryanarayanan P, Buleje I, Harrer S, Miller S, Rajmane A, Walsh C, Wanderer J, Reed GY, Ng K, Sow D, Malin B. Blending knowledge in deep recurrent networks for adverse event prediction at hospital discharge. In: Proceedings 2021 AMIA informatics summit. 2021.

    Google Scholar 

  48. Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inform Assoc. 2018;25(10):1419–28.

    Article  Google Scholar 

  49. Ho DSW, Schierding W, Wake M, Saffery R, O’Sullivan J. Machine learning SNP based prediction for precision medicine. Front Genet. 2019;10:267.

    Article  CAS  Google Scholar 

  50. Sakuma K, Abrami A, Blumrosen G, Lukashov S, Narayanan R, Ligman JW, Caggiano V, Heisig SJ. Wearable nail deformation sensing for behavioral and biomechanical monitoring and human-computer interaction. Sci Rep. 2018;8(1):18031.

    Article  CAS  Google Scholar 

  51. Yu S, Chen H, Brown R, Sherman SJ. Motion sensor-based assessment on fall risk and Parkinson’s disease severity: a deep multi-source multi-task learning (DMML) approach. In: Proceedings - 2018 IEEE international conference on healthcare informatics, ICHI 2018. Institute of Electrical and Electronics Engineers Inc; 2018. p. 174–9.

    Google Scholar 

  52. Chakraborty P, Wang F, Hu J, Sow D. Explicit-blurred memory network for analyzing patient electronic health records. arXiv:1911.06472 [cs, stat], July 2020. arXiv: 1911.06472.

    Google Scholar 

  53. Min X, Yu B, Wang F. Predictive modeling of the hospital readmission risk from patients’ claims data using machine learning: a case study on COPD. Sci Rep. 2019;9(1):2362.

    Article  Google Scholar 

  54. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1(5):206–15.

    Article  Google Scholar 

  55. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. arXiv:1706.03762 [cs], Dec 2017. arXiv: 1706.03762.

    Google Scholar 

  56. Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?”: explaining the predictions of any classifier. arXiv:1602.04938 [cs, stat], Aug 2016. arXiv: 1602.04938.

    Google Scholar 

  57. Lundberg S, Lee S-I. A unified approach to interpreting model predictions. arXiv:1705.07874 [cs, stat], Nov 2017. arXiv: 1705.07874.

    Google Scholar 

  58. Dhurandhar A, Chen P-Y, Luss R, Tu C-C, Ting P, Shanmugam K, Das P. Explanations based on the missing: towards contrastive explanations with pertinent negatives. arXiv:1802.07623 [cs], Oct 2018. arXiv: 1802.07623.

    Google Scholar 

  59. Prosperi M, Guo Y, Sperrin M, Koopman JS, Min JS, He X, Rich S, Wang M, Buchan IE, Bian J. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat Mach Intell. 2020;2(7):369–75.

    Article  Google Scholar 

  60. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–81.

    Article  Google Scholar 

  61. Cox DR. Regression models and life-tables. J R Stat Soc. 1972;B34(2):187–220.

    Google Scholar 

  62. Lee ET, Wang J. Statistical methods for survival data analysis. Wiley; 2003.

    Book  Google Scholar 

  63. Kleinbaum DG, Klein M. Survival analysis: a self-learning text. Springer; 2006.

    Google Scholar 

  64. Wang P, Li Y, Reddy C. Machine learning for survival analysis: a survey. ACM Comput Surv. 2019;51:1–36.

    Article  Google Scholar 

  65. Nagpal C, Li XR, Dubrawski A. Deep survival machines: fully parametric survival regression and representation learning for censored data with competing risks. IEEE J Biomed Health Inform. 2021.

    Google Scholar 

  66. Ranganath R, Perotte A, Elhadad N, Blei D. Deep survival analysis. In: Machine learning for healthcare conference. PMLR; 2016. p, 101–14.

    Google Scholar 

  67. Harrell FE, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Stat Med. 1984;3(2):143–52.

    Article  Google Scholar 

  68. Lin DY. On the Breslow estimator. Lifetime Data Anal. 2007;13(4):471–80.

    Article  CAS  Google Scholar 

  69. Xia F, Ning J, Huang X. Empirical Comparison of the Breslow Estimator and the Kalbfleisch Prentice Estimator for Survival Functions. J Biomet Biostat. 2018;9(2):392.

    Article  Google Scholar 

  70. Kvamme H, Borgan Ø, Scheel I. Time-to-event prediction with neural networks and cox regression. JMLR. 2019;20(129):1–30.

    Google Scholar 

  71. Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol. 2018;18:24.

    Article  Google Scholar 

  72. Yousefi S, Amrollahi F, Amgad M, Dong C, Lewis JE, Song C, Gutman DA, Halani SH, Vega JEV, Brat DJ, Cooper LAD. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci Rep. 2017;7:11707.

    Article  Google Scholar 

  73. Kim S, Kim K, Choe J, Lee I, Kang J. Improved survival analysis by learning shared genomic information from pan-cancer data. Bioinformatics. 2020;36:389–98.

    Article  Google Scholar 

  74. Fernández T, Rivera N, Teh YW. Gaussian processes for survival analysis. In: NIPS. 2016.

    Google Scholar 

  75. Wang L, Li Y, Zhou J, Zhu D, Ye J. Multi-task survival analysis. In: ICDM. 2017.

    Google Scholar 

  76. Ameri S, Fard MJ, Chinnam RB, Reddy CK. Survival analysis based framework for early prediction of student dropouts. In: CIKM. 2016.

    Google Scholar 

  77. Antolini L, Boracchi P, Biganzoli E. A time-dependent discrimination index for survival data. Stat Med. 2005;24(24):3927–44.

    Article  Google Scholar 

  78. Lee C, Zame WR, Yoon J, van der Schaar M. DeepHit: a deep learning approach to survival analysis with competing risks. In: AAAI. 2018.

    Google Scholar 

  79. Ren K, Qin J, Yang Z, Zheng L, Yang Z, Zhang W, Qiu L, Yu Y. Deep recurrent survival analysis. In: AAAI. 2019.

    Google Scholar 

  80. Zheng P, Yuan S, Wu X. SAFE: a neural survival analysis model for fraud early detection. In: AAAI. 2019.

    Google Scholar 

  81. Xue Y, Zhou D, Du N, Dai AM, Xu Z, Zhang K, Cui C. Deep State-Space Generative Model For Correlated Time-to-Event Predictions. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery and data mining; 2020. p. 1552–62.

    Chapter  Google Scholar 

  82. Alaa AM, van der Schaar M. Deep multi-task gaussian processes for survival analysis with competing risks. In: NIPS. 2017.

    Google Scholar 

  83. Chapfuwa P, Tao C, Li C, Page C, Goldstein B, Duke LC, Henao R. Adversarial time-to-event modeling. In: ICML. 2018.

    Google Scholar 

  84. Bou-Hamad I, Larocque D, Ben-Ameur H. A review of survival trees. Statist Surv. 2011;5:44–71. Publisher: The author, under a Creative Commons Attribution License.

    Article  Google Scholar 

  85. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Statist. 2008;2(3):841–60.

    Article  Google Scholar 

  86. Tjandra DE, He Y, Wiens J. A hierarchical approach to multi-event survival analysis. In: AAAI. 2021.

    Google Scholar 

  87. Lawrence ND. Gaussian process latent variable models for visualisation of high dimensional data. InNips. 2003;2:5.

    Google Scholar 

  88. Liu B, Li Y, Sun Z, Ghosh S, Ng K. Early prediction of diabetes complications from electronic health records: a multi-task survival analysis approach. In: AAAI. 2018.

    Google Scholar 

  89. LeCun Y, Haffner P, Bottou L, Bengio Y. Object recognition with gradient-based learning. In: Shape, contour and grouping in computer vision. Springer; 1999. p. 319–45.

    Chapter  Google Scholar 

  90. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.

    Article  CAS  Google Scholar 

  91. Avati A, Duan T, Zhou S, Jung K, Shah N, Ng A. Countdown regression: sharp and calibrated survival predictions; 2019. p. 145–55.

    Google Scholar 

  92. Goldstein M, Han X, Puli A, Perotte A, Ranganath R. X-CAL: explicit calibration for survival analysis. 2020.

    Google Scholar 

  93. Kamran F, Wiens J. Estimating calibrated individualized survival curves with deep learning. 2021.

    Google Scholar 

  94. Li Y, Wang J, Ye J, Reddy C. A multi-task learning formulation for survival analysis. In KDD. 2016.

    Google Scholar 

  95. Li Y, Wang L, Wang J, Ye J, Reddy CK. Transfer learning for survival analysis via efficient L2,1-norm regularized cox regression. 2016.

    Google Scholar 

  96. RTQ C, Rubanova Y, Bettencourt J, Duvenaud DK. Neural ordinary differential equations. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, editors. Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc.; 2018.

    Google Scholar 

  97. Habiba M, Pearlmutter BA. Neural ordinary differential equation based recurrent neural network model. In: 2020 31st Irish signals and systems conference (ISSC). 2020. p. 1–6. ISSN: 2688-1454.

    Google Scholar 

  98. Rubanova Y, Chen RTQ, Duvenaud DK. Latent ordinary differential equations for irregularly-sampled time series. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, editors. Advances in neural information processing systems, vol. 32. Curran Associates, Inc.; 2019.

    Google Scholar 

  99. Voelker A, Kajić I, Eliasmith C. Legendre memory units: continuous-time representation in recurrent neural networks. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, editors. Advances in neural information processing systems, vol. 32. Curran Associates, Inc.; 2019.

    Google Scholar 

  100. AAAI-SPACA 2021: spring symposium on survival prediction: algorithms, challenges, and applications. https://spaca.weebly.com/.

  101. Lange JM, Minin VN. Fitting and interpreting continuous-time latent Markov models for panel data. Stat Med. 2013;32(26):4581–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenney Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, K. et al. (2022). Data-Driven Disease Progression Modeling. In: Kiel, J.M., Kim, G.R., Ball, M.J. (eds) Healthcare Information Management Systems. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-031-07912-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07912-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07911-5

  • Online ISBN: 978-3-031-07912-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics