Abstract
Glycine is the simplest and smallest of amino acids. It functions as an inhibitory neurotransmitter in the central nervous system and also facilitates excitatory potential at the N-methyl-D-aspartic acid (NMDA) receptors, along with glutamate. It has anti-inflammatory, cytoprotective, and immunomodulatory properties. It is also required to synthesize collagen, purines, creatinine, heme, and other amino acids like serine and glutathione. In this chapter, we outline the historical aspects, the neurochemical properties, receptor functioning, metabolism, pharmacological, and clinical aspects of glycine in the nervous system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wisniak J. Henri Braconnot. Revista CENIC Ciencias Químicas. 2007;38:345–55.
Horsford E. ART. XXXVIII—Glucocoll (Gelatine sugar) and some of its products of decomposition. Am J Sci Arts. 1847;3(9):369.
Ihde AJ. The development of modern chemistry. Courier Corporation; 1984.
von Liebig J. Von Liebig and the theory of proteins of Gerard Mulder. https://earthwormexpress.com/2020/03/30/chapter-09-08-irish-animosity/
Wisniak J. Victor Dessaignes. Revista CENIC Ciencias Biológicas. 2014;45(1):62–72.
Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013;45(3):463–77.
Nye MJ. Before big science: the pursuit of modern chemistry and physics, vol. No. 1. Harvard University Press; 1999. p. 1800–940.
Plimmer RHA. The chemical constitution of the proteins, vol. 1. London: Longmans, Green & Company; 1912.
Paretsky D. Bacterial metabolism of glycine and alanine. 1948. (Doctoral dissertation, Iowa State College).
Pfeiffer F, Graham D, Betz H. Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem. 1982;257(16):9389–93.
Graham D, Pfeiffer F, Betz H. Photoaffinity-labelling of the glycine receptor of rat spinal cord. Eur J Biochem. 1983;131(3):519–25.
Graham D, Pfeiffer F, Simler R, Betz H. Purification and characterization of the glycine receptor of pig spinal cord. Biochemistry. 1985;24(4):990–4.
Schmitt B, Knaus P, Becker CM, Betz H. The Mr 93,000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. Biochemistry. 1987;26(3):805–11.
Langosch D, Becker CM, Betz H. The inhibitory glycine receptor: a ligand-gated chloride channel of the central nervous system. Eur J Biochem. 1990;194(1):1–8.
Danysz W, Parsons CG. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev. 1998;50(4):597–664.
Aprison MH, Werman R. The distribution of glycine in cat spinal cord and roots. Life Sci. 1965;4(21):2075–83.
Kubota H, Alle H, Betz H, Geiger JR. Presynaptic glycine receptors on hippocampal mossy fibers. Biochem Biophys Res Commun. 2010;393(4):587–91.
Vitanova L, Haverkamp S, Wässle H. Immunocytochemical localization of glycine and glycine receptors in the retina of the frog Rana ridibunda. Cell Tissue Res. 2004;317(3):227–35.
Ghavanini AA, Mathers DA, Puil E. Glycinergic inhibition in thalamus revealed by synaptic receptor blockade. Neuropharmacology. 2005;49(3):338–49.
Friauf E, Hammerschmidt B, Kirsch J. Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J Comp Neurol. 1997;385(1):117–34.
Bormann J, Rundström N, Betz H, Langosch D. Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO J. 1993;12(10):3729–37. [published correction appears in EMBO J. 1994 Mar 15;13(6):1493].
Kingsmore SF, Suh D, Seldin MF. Genetic mapping of the glycine receptor alpha 3 subunit on mouse chromosome 8. Mamm Genome. 1994;5(12):831–2.
Lynch JW. Native glycine receptor subtypes and their physiological roles. Neuropharmacology. 2009;56(1):303–9.
Fritschy JM, Harvey RJ, Schwarz G. Gephyrin: where do we stand, where do we go? Trends Neurosci. 2008;31(5):257–64.
Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature. 2003;423(6943):949–55.
Hilf RJ, Dutzler R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature. 2008;452(7185):375–9.
Karlin A, Akabas MH. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron. 1995;15(6):1231–44.
Brejc K, van Dijk WJ, Smit AB, Sixma TK. The 2.7A structure of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Novartis Found Symp. 2002;245:22–168.
Corringer PJ, Le Novère N, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol. 2000;40:431–58.
Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG. The activation mechanism of alpha1 homomeric glycine receptors. J Neurosci. 2004;24(4):895–906.
Hernandes MS, Troncone LRP. Glycine as a neurotransmitter in the forebrain: a short review. J Neural Transm. 2009;116:1551–60.
Galaz P, Barra R, Figueroa H, Mariqueo T. Advances in the pharmacology of lGICs auxiliary subunits. Pharmacol Res. 2015;101:65–73.
Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96. [published correction appears in Pharmacol Rev. 2014 Oct;66(4):1141].
Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol. 1994;347(1):150–60.
Martínez-Maza R, Poyatos I, López-Corcuera B, et al. The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem. 2001;276(3):2168–73.
Erdem FA, Ilic M, Koppensteiner P, et al. A comparison of the transport kinetics of glycine transporter 1 and glycine transporter 2. J Gen Physiol. 2019;151(8):1035–50.
Howard A, Tahir I, Javed S, Waring SM, Ford D, Hirst BH. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J Physiol. 2010;588(Pt 6):995–1009.
Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995;15(5 Pt 2):3952–69.
Cubelos B, Giménez C, Zafra F. Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex. 2005;15(4):448–59.
Aroeira RI, Sebastião AM, Valente CA. BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia. 2015;63(12):2181–97.
Wu G. Amino acids: biochemistry and nutrition. CRC Press; 2013.
Van den Eynden J, Ali SS, Horwood N, et al. Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci. 2009;2:9. Published 2009 Aug 20.
Stein V, Nicoll RA. GABA generates excitement. Neuron. 2003;37(3):375–8.
Saransaari P, Oja SS. Mechanisms of glycine release in mouse brain stem slices. Neurochem Res. 2009;34(2):286–94.
Betz H, Laube B. Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem. 2006;97(6):1600–10.
Harvey RJ, Depner UB, Wässle H, et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 2004;304(5672):884–7.
Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3(9):728–39.
Wester MR, Teasley DC, Byers SL, Saha MS. Expression patterns of glycine transporters (xGlyT1, xGlyT2, and xVIAAT) in Xenopus laevis during early development. Gene Expr Patterns. 2008;8(4):261–70.
Kirsch J, Betz H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature. 1998;392(6677):717–20.
Hoch W, Betz H, Becker CM. Primary cultures of mouse spinal cord express the neonatal isoform of the inhibitory glycine receptor. Neuron. 1989;3(3):339–48.
Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004;84(4):1051–95.
Sergeeva OA. Comparison of glycine- and GABA-evoked currents in two types of neurons isolated from the rat striatum. Neurosci Lett. 1998;243(1–3):9–12.
Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325(6104):529–31.
Kuryatov A, Laube B, Betz H, Kuhse J. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron. 1994;12(6):1291–300.
Meguro H, Mori H, Araki K, et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992;357(6373):70–4.
Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol. 2003;89(2):691–703.
Marques BL, Oliveira-Lima OC, Carvalho GA, et al. Neurobiology of glycine transporters: from molecules to behavior. Neurosci Biobehav Rev. 2020;118:97–110. [published online ahead of print, 2020 Jul 24].
Milanese M, Romei C, Usai C, Oliveri M, Raiteri L. A new function for glycine GlyT2 transporters: stimulation of γ-aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca (2+)-dependent anion channels. J Neurosci Res. 2014;92(3):398–408.
Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients. 2019;11(6):1356. Published 2019 Jun 16.
Yu YM, Yang RD, Matthews DE, et al. Quantitative aspects of glycine and alanine nitrogen metabolism in postabsorptive young men: effects of level of nitrogen and dispensable amino acid intake. J Nutr. 1985;115(3):399–410.
Meléndez-Hevia E, De Paz-Lugo P, Cornish-Bowden A, Cárdenas ML. A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. J Biosci. 2009;34(6):853–72.
de Koning TJ, Snell K, Duran M, Berger R, Poll-The BT, Surtees R. L-serine in disease and development. Biochem J. 2003;371(Pt 3):653–61.
Lewis RM, Godfrey KM, Jackson AA, Cameron IT, Hanson MA. Low serine hydroxymethyltransferase activity in the human placenta has important implications for fetal glycine supply. J Clin Endocrinol Metab. 2005;90(3):1594–8.
Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12.
Garrow TA, Brenner AA, Whitehead VM, et al. Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J Biol Chem. 1993;268(16):11910–6.
Stover PJ, Chen LH, Suh JR, Stover DM, Keyomarsi K, Shane B. Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. J Biol Chem. 1997;272(3):1842–8.
Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5:3083.
Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27–42.
House JD, Hall BN, Brosnan JT. Threonine metabolism in isolated rat hepatocytes. Am J Physiol Endocrinol Metab. 2001;281(6):E1300–7.
Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol. 1998;160(5):1617–24.
Boll M, Daniel H, Gasnier B. The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch. 2004;447(5):776–9.
Bröer S. The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch. 2014;466(1):155–72.
Kim KM, Kingsmore SF, Han H, et al. Cloning of the human glycine transporter type 1: molecular and pharmacological characterization of novel isoform variants and chromosomal localization of the gene in the human and mouse genomes. Mol Pharmacol. 1994;45(4):608–17.
Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci U S A. 1998;95(26):15730–4.
Xu TX, Gong N, Xu TL. Inhibitors of GlyT1 and GlyT2 differentially modulate inhibitory transmission. Neuroreport. 2005;16(11):1227–31.
Thureen PJ, Narkewicz MR, Battaglia FC, Tjoa S, Fennessey PV. Pathways of serine and glycine metabolism in primary culture of ovine fetal hepatocytes. Pediatr Res. 1995;38(5):775–82.
Matthews DE, Conway JM, Young VR, Bier DM. Glycine nitrogen metabolism in man. Metabolism. 1981;30(9):886–93.
Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad Ser B Phys Biol Sci. 2008;84(7):246–63.
Fujiwara K, Motokawa Y. Mechanism of the glycine cleavage reaction. Steady state kinetic studies of the P-protein-catalyzed reaction. J Biol Chem. 1983;258(13):8156–62.
Fujiwara K, Okamura-Ikeda K, Motokawa Y. Mechanism of the glycine cleavage reaction. Further characterization of the intermediate attached to H-protein and of the reaction catalyzed by T-protein. J Biol Chem. 1984;259(17):10664–8.
Lamers Y, Williamson J, Gilbert LR, Stacpoole PW, Gregory JF 3rd. Glycine turnover and decarboxylation rate quantified in healthy men and women using primed, constant infusions of [1,2-(13)C2] glycine and [(2)H3] leucine. J Nutr. 2007;137(12):2647–52.
Yevenes GE, Zeilhofer HU. Allosteric modulation of glycine receptors. Br J Pharmacol. 2011;164(2):224–36.
Lynch JW, Zhang Y, Talwar S, Estrada-Mondragon A. Glycine receptor drug discovery. Adv Pharmacol. 2017;79:225–53.
McCavera S, Rogers AT, Yates DM, Woods DJ, Wolstenholme AJ. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus. Mol Pharmacol. 2009;75(6):1347–55.
Omura S. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents. 2008;31(2):91–8.
Shan Q, Haddrill JL, Lynch JW. Ivermectin, an unconventional agonist of the glycine receptor chloride channel. J Biol Chem. 2001;276(16):12556–64.
Lynagh T, Lynch JW. A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors. Int J Parasitol. 2010;40(13):1477–81.
Eggers ED, Berger AJ. Mechanisms for the modulation of native glycine receptor channels by ethanol. J Neurophysiol. 2004;91(6):2685–95.
Perkins DI, Trudell JR, Crawford DK, Alkana RL, Davies DL. Targets for ethanol action and antagonism in loop 2 of the extracellular domain of glycine receptors. J Neurochem. 2008;106(3):1337–49.
Yevenes GE, Moraga-Cid G, Avila A, et al. Molecular requirements for ethanol differential allosteric modulation of glycine receptors based on selective Gbetagamma modulation. J Biol Chem. 2010;285(39):30203–13.
Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids. J Neurosci. 2005;25(33):7499–506.
Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L. Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol. 2006;69(3):991–7.
Oz M. Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids. Pharmacol Ther. 2006;111(1):114–44.
Harrison NL, Kugler JL, Jones MV, Greenblatt EP, Pritchett DB. Positive modulation of human gamma-aminobutyric acid type A and glycine receptors by the inhalation anesthetic isoflurane. Mol Pharmacol. 1993;44(3):628–32.
Downie DL, Hall AC, Lieb WR, Franks NP. Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes. Br J Pharmacol. 1996;118(3):493–502.
Yamashita M, Ueno T, Akaike N, Ikemoto Y. Modulation of miniature inhibitory postsynaptic currents by isoflurane in rat dissociated neurons with glycinergic synaptic boutons. Eur J Pharmacol. 2001;431(3):269–76.
Cheng G, Kendig JJ. Pre- and postsynaptic volatile anaesthetic actions on glycinergic transmission to spinal cord motor neurons. Br J Pharmacol. 2002;136(5):673–84.
Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5(9):709–20.
Yamauchi M, Sekiyama H, Shimada SG, Collins JG. Halothane suppression of spinal sensory neuronal responses to noxious peripheral stimuli is mediated, in part, by both GABA(A) and glycine receptor systems. Anesthesiology. 2002;97(2):412–7.
Pistis M, Belelli D, Peters JA, Lambert JJ. The interaction of general anaesthetics with recombinant GABAA and glycine receptors expressed in Xenopus laevis oocytes: a comparative study. Br J Pharmacol. 1997;122(8):1707–19.
Liu J, Wu DC, Wang YT. Allosteric potentiation of glycine receptor chloride currents by glutamate. Nat Neurosci. 2010;13(10):1225–32. [published correction appears in Nat Neurosci. 2011 Sep;14(9):1217].
Fodor L, Boros A, Dezso P, Maksay G. Expression of heteromeric glycine receptor-channels in rat spinal cultures and inhibition by neuroactive steroids. Neurochem Int. 2006;49(6):577–83.
Ahrens J, Leuwer M, Demir R, Krampfl K, Foadi N, Haeseler G. The anaesthetic steroid alphaxalone positively modulates alpha1-glycine receptor function. Pharmacology. 2008;82(3):228–32.
Jin X, Covey DF, Steinbach JH. Kinetic analysis of voltage-dependent potentiation and block of the glycine alpha 3 receptor by a neuroactive steroid analogue. J Physiol. 2009;587(Pt 5):981–97.
Chesnoy-Marchais D. Potentiation of chloride responses to glycine by three 5-HT3 antagonists in rat spinal neurones. Br J Pharmacol. 1996;118(8):2115–25.
Yang Z, Ney A, Cromer BA, Ng HL, Parker MW, Lynch JW. Tropisetron modulation of the glycine receptor: femtomolar potentiation and a molecular determinant of inhibition. J Neurochem. 2007;100(3):758–69.
Supplisson S, Chesnoy-Marchais D. Glycine receptor beta subunits play a critical role in potentiation of glycine responses by ICS-205,930. Mol Pharmacol. 2000;58(4):763–70.
Joshi PR, Suryanarayanan A, Hazai E, Schulte MK, Maksay G, Bikádi Z. Interactions of granisetron with an agonist-free 5-HT3A receptor model. Biochemistry. 2006;45(4):1099–105.
Nevin ST, Cromer BA, Haddrill JL, Morton CJ, Parker MW, Lynch JW. Insights into the structural basis for zinc inhibition of the glycine receptor. J Biol Chem. 2003;278(31):28985–92.
Miller PS, Topf M, Smart TG. Mapping a molecular link between allosteric inhibition and activation of the glycine receptor. Nat Struct Mol Biol. 2008;15(10):1084–93.
Laube B, Kuhse J, Betz H. Kinetic and mutational analysis of Zn2+ modulation of recombinant human inhibitory glycine receptors. J Physiol. 2000;522 Pt 2(Pt 2):215–30.
Miller PS, Beato M, Harvey RJ, Smart TG. Molecular determinants of glycine receptor alphabeta subunit sensitivities to Zn2+−mediated inhibition. J Physiol. 2005;566(Pt 3):657–70.
Jin GL, Su YP, Liu M, et al. Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales)—a review of their phytochemistry, pharmacology, toxicology and traditional use. J Ethnopharmacol. 2014;152(1):33–52.
Zhang JY, Gong N, Huang JL, Guo LC, Wang YX. Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors. Pain. 2013;154(11):2452–62.
Umbricht D, Alberati D, Martin-Facklam M, et al. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiat. 2014;71(6):637–46.
Kantrowitz JT, Nolan KA, Epstein ML, et al. Neurophysiological effects of Bitopertin in schizophrenia. J Clin Psychopharmacol. 2017;37(4):447–51.
Singer P, Dubroqua S, Yee BK. Inhibition of glycine transporter 1: the yellow brick road to new schizophrenia therapy? Curr Pharm Des. 2015;21(26):3771–87.
Bugarski-Kirola D, Iwata N, Sameljak S, et al. Efficacy and safety of adjunctive bitopertin versus placebo in patients with suboptimally controlled symptoms of schizophrenia treated with antipsychotics: results from three phase 3, randomised, double-blind, parallel-group, placebo-controlled, multicentre studies in the SearchLyte clinical trial programme. Lancet Psychiatry. 2016;3(12):1115–28.
Tsai G, Lane HY, Yang P, Chong MY, Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2004;55(5):452–6.
Singh SP, Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs. 2011;25(10):859–85.
Dang YH, Ma XC, Zhang JC, et al. Targeting of NMDA receptors in the treatment of major depression. Curr Pharm Des. 2014;20(32):5151–9.
Glycine transporters. Br J Pharmacol. 2009;158(Suppl 1): S195–6.
Zeilhofer HU, Acuña MA, Gingras J, Yévenes GE. Glycine receptors and glycine transporters: targets for novel analgesics? Cell Mol Life Sci. 2018;75(3):447–65.
Bradaïa A, Schlichter R, Trouslard J. Role of glial and neuronal glycine transporters in the control of glycinergic and glutamatergic synaptic transmission in lamina X of the rat spinal cord. J Physiol. 2004;559(Pt 1):169–86. [published correction appears in J Physiol. 2004 Sep 15;559(Pt 3):985].
Harvey RJ, Rigo JM. Glycinergic transmission: physiological, developmental and pathological implications. Front Mol Neurosci. 2010;3:115. Published 2010 Aug 19.
Rees MI, Harvey K, Ward H, et al. Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem. 2003;278(27):24688–96.
Bode A, Lynch JW. The impact of human hyperekplexia mutations on glycine receptor structure and function. Mol Brain. 2014;7:2. Published 2014 Jan 9.
Suhren O, Bruyn GW, Tuynman JA. Hyperexplexia: a hereditary startle syndrome. J Neurol Sci. 1966;3(6):577–605.
Thomas RH, Chung SK, Wood SE, et al. Genotype-phenotype correlations in hyperekplexia: apnoeas, learning difficulties and speech delay. Brain. 2013;136(Pt 10):3085–95.
Conter C, Rolland MO, Cheillan D, Bonnet V, Maire I, Froissart R. Genetic heterogeneity of the GLDC gene in 28 unrelated patients with glycine encephalopathy. J Inherit Metab Dis. 2006;29(1):135–42.
Hoover-Fong JE, Shah S, Van Hove JL, Applegarth D, Toone J, Hamosh A. Natural history of nonketotic hyperglycinemia in 65 patients. Neurology. 2004;63(10):1847–53.
Korman SH, Wexler ID, Gutman A, Rolland MO, Kanno J, Kure S. Treatment from birth of nonketotic hyperglycinemia due to a novel GLDC mutation. Ann Neurol. 2006;59(2):411–5.
Tada K. Nonketotic hyperglycinemia: clinical and metabolic aspects. Enzyme. 1987;38(1–4):27–35.
Kanno J, Hutchin T, Kamada F, et al. Genomic deletion within GLDC is a major cause of non-ketotic hyperglycinaemia. J Med Genet. 2007;44(3):e69.
McKeon A, Robinson MT, McEvoy KM, et al. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Arch Neurol. 2012;69(2):230–8.
Gluck L, Hernandez AL, Wesley SF, Fulbright RK, Longbrake EE, Stathopoulos P. Therapeutic considerations in a case of progressive encephalomyelitis with rigidity and myoclonus. J Neurol Sci. 2020;416:116993. [published online ahead of print, 2020 Jun 18].
Carvajal-González A, Leite MI, Waters P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain. 2014;137(Pt 8):2178–92. [published correction appears in brain. 2014 Dec;137(Pt 12): e315. Press, Raomand [corrected to press, Rayomand]].
Hinson SR, Lopez-Chiriboga AS, Bower JH, et al. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders. Neurol Neuroimmunol Neuroinflamm. 2018;5(2):e438. Published 2018 Jan 23.
Gomeza J, Hülsmann S, Ohno K, et al. Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron. 2003;40(4):785–96. [published correction appears in neuron. 2004 Feb 19;41(4):675].
Shen HY, van Vliet EA, Bright KA, et al. Glycine transporter 1 is a target for the treatment of epilepsy. Neuropharmacology. 2015;99:554–65.
Winkelmann A, Maggio N, Eller J, et al. Changes in neural network homeostasis trigger neuropsychiatric symptoms. J Clin Invest. 2014;124(2):696–711.
Eichler SA, Kirischuk S, Jüttner R, et al. Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J Cell Mol Med. 2008;12(6B):2848–66. [published correction appears in J Cell Mol Med. 2012 Apr;16(4):959. Schafermeier, Philipp K [corrected to Schaefermeier, Philipp K]].
Zhang LH, Gong N, Fei D, Xu L, Xu TL. Glycine uptake regulates hippocampal network activity via glycine receptor-mediated tonic inhibition. Neuropsychopharmacology. 2008;33(3):701–11.
Javitt DC. Glycine transport inhibitors in the treatment of schizophrenia. Handb Exp Pharmacol. 2012;213:367–99.
Boison D. The biochemistry and epigenetics of epilepsy: focus on adenosine and glycine. Front Mol Neurosci. 2016;9:26. Published 2016 Apr 13.
Kegeles LS, Abi-Dargham A, Zea-Ponce Y, et al. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry. 2000;48(7):627–40.
Harvey RJ, Yee BK. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov. 2013;12(11):866–85.
Lynch JW, Callister RJ. Glycine receptors: a new therapeutic target in pain pathways. Curr Opin Investig Drugs. 2006;7(1):48–53.
Vengeliene V, Bilbao A, Molander A, Spanagel R. Neuropharmacology of alcohol addiction. Br J Pharmacol. 2008;154(2):299–315.
Jonsson S, Adermark L, Ericson M, Söderpalm B. The involvement of accumbal glycine receptors in the dopamine-elevating effects of addictive drugs. Neuropharmacology. 2014;82:69–75.
Acknowledgments
All the pictures in this chapter were prepared using Biorender premium software. The tables were redrawn using information from the reference article mentoned alongside them.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Idiculla, P.S., Nagarajan, E., Murala, S., Bollu, P.C. (2022). Glycine. In: Bollu, P.C. (eds) Neurochemistry in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-07897-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-07897-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07896-5
Online ISBN: 978-3-031-07897-2
eBook Packages: MedicineMedicine (R0)