Skip to main content

Glycine

  • Chapter
  • First Online:
Neurochemistry in Clinical Practice

Abstract

Glycine is the simplest and smallest of amino acids. It functions as an inhibitory neurotransmitter in the central nervous system and also facilitates excitatory potential at the N-methyl-D-aspartic acid (NMDA) receptors, along with glutamate. It has anti-inflammatory, cytoprotective, and immunomodulatory properties. It is also required to synthesize collagen, purines, creatinine, heme, and other amino acids like serine and glutathione. In this chapter, we outline the historical aspects, the neurochemical properties, receptor functioning, metabolism, pharmacological, and clinical aspects of glycine in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wisniak J. Henri Braconnot. Revista CENIC Ciencias Químicas. 2007;38:345–55.

    Google Scholar 

  2. Horsford E. ART. XXXVIII—Glucocoll (Gelatine sugar) and some of its products of decomposition. Am J Sci Arts. 1847;3(9):369.

    Google Scholar 

  3. Ihde AJ. The development of modern chemistry. Courier Corporation; 1984.

    Google Scholar 

  4. von Liebig J. Von Liebig and the theory of proteins of Gerard Mulder. https://earthwormexpress.com/2020/03/30/chapter-09-08-irish-animosity/

  5. Wisniak J. Victor Dessaignes. Revista CENIC Ciencias Biológicas. 2014;45(1):62–72.

    Google Scholar 

  6. Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013;45(3):463–77.

    Article  PubMed  CAS  Google Scholar 

  7. Nye MJ. Before big science: the pursuit of modern chemistry and physics, vol. No. 1. Harvard University Press; 1999. p. 1800–940.

    Google Scholar 

  8. Plimmer RHA. The chemical constitution of the proteins, vol. 1. London: Longmans, Green & Company; 1912.

    Google Scholar 

  9. Paretsky D. Bacterial metabolism of glycine and alanine. 1948. (Doctoral dissertation, Iowa State College).

    Google Scholar 

  10. Pfeiffer F, Graham D, Betz H. Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem. 1982;257(16):9389–93.

    Article  CAS  PubMed  Google Scholar 

  11. Graham D, Pfeiffer F, Betz H. Photoaffinity-labelling of the glycine receptor of rat spinal cord. Eur J Biochem. 1983;131(3):519–25.

    Article  CAS  PubMed  Google Scholar 

  12. Graham D, Pfeiffer F, Simler R, Betz H. Purification and characterization of the glycine receptor of pig spinal cord. Biochemistry. 1985;24(4):990–4.

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt B, Knaus P, Becker CM, Betz H. The Mr 93,000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. Biochemistry. 1987;26(3):805–11.

    Article  CAS  PubMed  Google Scholar 

  14. Langosch D, Becker CM, Betz H. The inhibitory glycine receptor: a ligand-gated chloride channel of the central nervous system. Eur J Biochem. 1990;194(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Danysz W, Parsons CG. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev. 1998;50(4):597–664.

    CAS  PubMed  Google Scholar 

  16. Aprison MH, Werman R. The distribution of glycine in cat spinal cord and roots. Life Sci. 1965;4(21):2075–83.

    Article  CAS  PubMed  Google Scholar 

  17. Kubota H, Alle H, Betz H, Geiger JR. Presynaptic glycine receptors on hippocampal mossy fibers. Biochem Biophys Res Commun. 2010;393(4):587–91.

    Article  CAS  PubMed  Google Scholar 

  18. Vitanova L, Haverkamp S, Wässle H. Immunocytochemical localization of glycine and glycine receptors in the retina of the frog Rana ridibunda. Cell Tissue Res. 2004;317(3):227–35.

    Article  CAS  PubMed  Google Scholar 

  19. Ghavanini AA, Mathers DA, Puil E. Glycinergic inhibition in thalamus revealed by synaptic receptor blockade. Neuropharmacology. 2005;49(3):338–49.

    Article  CAS  PubMed  Google Scholar 

  20. Friauf E, Hammerschmidt B, Kirsch J. Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J Comp Neurol. 1997;385(1):117–34.

    Article  CAS  PubMed  Google Scholar 

  21. Bormann J, Rundström N, Betz H, Langosch D. Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO J. 1993;12(10):3729–37. [published correction appears in EMBO J. 1994 Mar 15;13(6):1493].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kingsmore SF, Suh D, Seldin MF. Genetic mapping of the glycine receptor alpha 3 subunit on mouse chromosome 8. Mamm Genome. 1994;5(12):831–2.

    Article  CAS  PubMed  Google Scholar 

  23. Lynch JW. Native glycine receptor subtypes and their physiological roles. Neuropharmacology. 2009;56(1):303–9.

    Article  CAS  PubMed  Google Scholar 

  24. Fritschy JM, Harvey RJ, Schwarz G. Gephyrin: where do we stand, where do we go? Trends Neurosci. 2008;31(5):257–64.

    Article  CAS  PubMed  Google Scholar 

  25. Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature. 2003;423(6943):949–55.

    Article  CAS  PubMed  Google Scholar 

  26. Hilf RJ, Dutzler R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature. 2008;452(7185):375–9.

    Article  CAS  PubMed  Google Scholar 

  27. Karlin A, Akabas MH. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron. 1995;15(6):1231–44.

    Article  CAS  PubMed  Google Scholar 

  28. Brejc K, van Dijk WJ, Smit AB, Sixma TK. The 2.7A structure of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Novartis Found Symp. 2002;245:22–168.

    CAS  PubMed  Google Scholar 

  29. Corringer PJ, Le Novère N, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol. 2000;40:431–58.

    Article  CAS  PubMed  Google Scholar 

  30. Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG. The activation mechanism of alpha1 homomeric glycine receptors. J Neurosci. 2004;24(4):895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hernandes MS, Troncone LRP. Glycine as a neurotransmitter in the forebrain: a short review. J Neural Transm. 2009;116:1551–60.

    Article  CAS  PubMed  Google Scholar 

  32. Galaz P, Barra R, Figueroa H, Mariqueo T. Advances in the pharmacology of lGICs auxiliary subunits. Pharmacol Res. 2015;101:65–73.

    Article  CAS  PubMed  Google Scholar 

  33. Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96. [published correction appears in Pharmacol Rev. 2014 Oct;66(4):1141].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol. 1994;347(1):150–60.

    Article  CAS  PubMed  Google Scholar 

  35. Martínez-Maza R, Poyatos I, López-Corcuera B, et al. The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem. 2001;276(3):2168–73.

    Article  PubMed  Google Scholar 

  36. Erdem FA, Ilic M, Koppensteiner P, et al. A comparison of the transport kinetics of glycine transporter 1 and glycine transporter 2. J Gen Physiol. 2019;151(8):1035–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Howard A, Tahir I, Javed S, Waring SM, Ford D, Hirst BH. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J Physiol. 2010;588(Pt 6):995–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995;15(5 Pt 2):3952–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cubelos B, Giménez C, Zafra F. Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex. 2005;15(4):448–59.

    Article  PubMed  Google Scholar 

  40. Aroeira RI, Sebastião AM, Valente CA. BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia. 2015;63(12):2181–97.

    Article  PubMed  Google Scholar 

  41. Wu G. Amino acids: biochemistry and nutrition. CRC Press; 2013.

    Book  Google Scholar 

  42. Van den Eynden J, Ali SS, Horwood N, et al. Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci. 2009;2:9. Published 2009 Aug 20.

    PubMed  Google Scholar 

  43. Stein V, Nicoll RA. GABA generates excitement. Neuron. 2003;37(3):375–8.

    Article  CAS  PubMed  Google Scholar 

  44. Saransaari P, Oja SS. Mechanisms of glycine release in mouse brain stem slices. Neurochem Res. 2009;34(2):286–94.

    Article  CAS  PubMed  Google Scholar 

  45. Betz H, Laube B. Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem. 2006;97(6):1600–10.

    Article  CAS  PubMed  Google Scholar 

  46. Harvey RJ, Depner UB, Wässle H, et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 2004;304(5672):884–7.

    Article  CAS  PubMed  Google Scholar 

  47. Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3(9):728–39.

    Article  CAS  PubMed  Google Scholar 

  48. Wester MR, Teasley DC, Byers SL, Saha MS. Expression patterns of glycine transporters (xGlyT1, xGlyT2, and xVIAAT) in Xenopus laevis during early development. Gene Expr Patterns. 2008;8(4):261–70.

    Article  CAS  PubMed  Google Scholar 

  49. Kirsch J, Betz H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature. 1998;392(6677):717–20.

    Article  CAS  PubMed  Google Scholar 

  50. Hoch W, Betz H, Becker CM. Primary cultures of mouse spinal cord express the neonatal isoform of the inhibitory glycine receptor. Neuron. 1989;3(3):339–48.

    Article  CAS  PubMed  Google Scholar 

  51. Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004;84(4):1051–95.

    Article  CAS  PubMed  Google Scholar 

  52. Sergeeva OA. Comparison of glycine- and GABA-evoked currents in two types of neurons isolated from the rat striatum. Neurosci Lett. 1998;243(1–3):9–12.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325(6104):529–31.

    Article  CAS  PubMed  Google Scholar 

  54. Kuryatov A, Laube B, Betz H, Kuhse J. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron. 1994;12(6):1291–300.

    Article  CAS  PubMed  Google Scholar 

  55. Meguro H, Mori H, Araki K, et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992;357(6373):70–4.

    Article  CAS  PubMed  Google Scholar 

  56. Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol. 2003;89(2):691–703.

    Article  CAS  PubMed  Google Scholar 

  57. Marques BL, Oliveira-Lima OC, Carvalho GA, et al. Neurobiology of glycine transporters: from molecules to behavior. Neurosci Biobehav Rev. 2020;118:97–110. [published online ahead of print, 2020 Jul 24].

    Article  CAS  PubMed  Google Scholar 

  58. Milanese M, Romei C, Usai C, Oliveri M, Raiteri L. A new function for glycine GlyT2 transporters: stimulation of γ-aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca (2+)-dependent anion channels. J Neurosci Res. 2014;92(3):398–408.

    Article  CAS  PubMed  Google Scholar 

  59. Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients. 2019;11(6):1356. Published 2019 Jun 16.

    Article  CAS  PubMed Central  Google Scholar 

  60. Yu YM, Yang RD, Matthews DE, et al. Quantitative aspects of glycine and alanine nitrogen metabolism in postabsorptive young men: effects of level of nitrogen and dispensable amino acid intake. J Nutr. 1985;115(3):399–410.

    Article  CAS  PubMed  Google Scholar 

  61. Meléndez-Hevia E, De Paz-Lugo P, Cornish-Bowden A, Cárdenas ML. A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. J Biosci. 2009;34(6):853–72.

    Article  PubMed  CAS  Google Scholar 

  62. de Koning TJ, Snell K, Duran M, Berger R, Poll-The BT, Surtees R. L-serine in disease and development. Biochem J. 2003;371(Pt 3):653–61.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lewis RM, Godfrey KM, Jackson AA, Cameron IT, Hanson MA. Low serine hydroxymethyltransferase activity in the human placenta has important implications for fetal glycine supply. J Clin Endocrinol Metab. 2005;90(3):1594–8.

    Article  CAS  PubMed  Google Scholar 

  64. Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12.

    Article  CAS  PubMed  Google Scholar 

  65. Garrow TA, Brenner AA, Whitehead VM, et al. Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J Biol Chem. 1993;268(16):11910–6.

    Article  CAS  PubMed  Google Scholar 

  66. Stover PJ, Chen LH, Suh JR, Stover DM, Keyomarsi K, Shane B. Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. J Biol Chem. 1997;272(3):1842–8.

    Article  CAS  PubMed  Google Scholar 

  67. Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5:3083.

    Article  PubMed  CAS  Google Scholar 

  68. Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  69. House JD, Hall BN, Brosnan JT. Threonine metabolism in isolated rat hepatocytes. Am J Physiol Endocrinol Metab. 2001;281(6):E1300–7.

    Article  CAS  PubMed  Google Scholar 

  70. Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. J Urol. 1998;160(5):1617–24.

    Article  CAS  PubMed  Google Scholar 

  71. Boll M, Daniel H, Gasnier B. The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch. 2004;447(5):776–9.

    Article  CAS  PubMed  Google Scholar 

  72. Bröer S. The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch. 2014;466(1):155–72.

    Article  PubMed  CAS  Google Scholar 

  73. Kim KM, Kingsmore SF, Han H, et al. Cloning of the human glycine transporter type 1: molecular and pharmacological characterization of novel isoform variants and chromosomal localization of the gene in the human and mouse genomes. Mol Pharmacol. 1994;45(4):608–17.

    CAS  PubMed  Google Scholar 

  74. Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci U S A. 1998;95(26):15730–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu TX, Gong N, Xu TL. Inhibitors of GlyT1 and GlyT2 differentially modulate inhibitory transmission. Neuroreport. 2005;16(11):1227–31.

    Article  CAS  PubMed  Google Scholar 

  76. Thureen PJ, Narkewicz MR, Battaglia FC, Tjoa S, Fennessey PV. Pathways of serine and glycine metabolism in primary culture of ovine fetal hepatocytes. Pediatr Res. 1995;38(5):775–82.

    Article  CAS  PubMed  Google Scholar 

  77. Matthews DE, Conway JM, Young VR, Bier DM. Glycine nitrogen metabolism in man. Metabolism. 1981;30(9):886–93.

    Article  CAS  PubMed  Google Scholar 

  78. Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad Ser B Phys Biol Sci. 2008;84(7):246–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fujiwara K, Motokawa Y. Mechanism of the glycine cleavage reaction. Steady state kinetic studies of the P-protein-catalyzed reaction. J Biol Chem. 1983;258(13):8156–62.

    Article  CAS  PubMed  Google Scholar 

  80. Fujiwara K, Okamura-Ikeda K, Motokawa Y. Mechanism of the glycine cleavage reaction. Further characterization of the intermediate attached to H-protein and of the reaction catalyzed by T-protein. J Biol Chem. 1984;259(17):10664–8.

    Article  CAS  PubMed  Google Scholar 

  81. Lamers Y, Williamson J, Gilbert LR, Stacpoole PW, Gregory JF 3rd. Glycine turnover and decarboxylation rate quantified in healthy men and women using primed, constant infusions of [1,2-(13)C2] glycine and [(2)H3] leucine. J Nutr. 2007;137(12):2647–52.

    Article  CAS  PubMed  Google Scholar 

  82. Yevenes GE, Zeilhofer HU. Allosteric modulation of glycine receptors. Br J Pharmacol. 2011;164(2):224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lynch JW, Zhang Y, Talwar S, Estrada-Mondragon A. Glycine receptor drug discovery. Adv Pharmacol. 2017;79:225–53.

    Article  CAS  PubMed  Google Scholar 

  84. McCavera S, Rogers AT, Yates DM, Woods DJ, Wolstenholme AJ. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus. Mol Pharmacol. 2009;75(6):1347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Omura S. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents. 2008;31(2):91–8.

    Article  CAS  PubMed  Google Scholar 

  86. Shan Q, Haddrill JL, Lynch JW. Ivermectin, an unconventional agonist of the glycine receptor chloride channel. J Biol Chem. 2001;276(16):12556–64.

    Article  CAS  PubMed  Google Scholar 

  87. Lynagh T, Lynch JW. A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors. Int J Parasitol. 2010;40(13):1477–81.

    Article  CAS  PubMed  Google Scholar 

  88. Eggers ED, Berger AJ. Mechanisms for the modulation of native glycine receptor channels by ethanol. J Neurophysiol. 2004;91(6):2685–95.

    Article  CAS  PubMed  Google Scholar 

  89. Perkins DI, Trudell JR, Crawford DK, Alkana RL, Davies DL. Targets for ethanol action and antagonism in loop 2 of the extracellular domain of glycine receptors. J Neurochem. 2008;106(3):1337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yevenes GE, Moraga-Cid G, Avila A, et al. Molecular requirements for ethanol differential allosteric modulation of glycine receptors based on selective Gbetagamma modulation. J Biol Chem. 2010;285(39):30203–13.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lozovaya N, Yatsenko N, Beketov A, Tsintsadze T, Burnashev N. Glycine receptors in CNS neurons as a target for nonretrograde action of cannabinoids. J Neurosci. 2005;25(33):7499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hejazi N, Zhou C, Oz M, Sun H, Ye JH, Zhang L. Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors. Mol Pharmacol. 2006;69(3):991–7.

    Article  CAS  PubMed  Google Scholar 

  93. Oz M. Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids. Pharmacol Ther. 2006;111(1):114–44.

    Article  CAS  PubMed  Google Scholar 

  94. Harrison NL, Kugler JL, Jones MV, Greenblatt EP, Pritchett DB. Positive modulation of human gamma-aminobutyric acid type A and glycine receptors by the inhalation anesthetic isoflurane. Mol Pharmacol. 1993;44(3):628–32.

    CAS  PubMed  Google Scholar 

  95. Downie DL, Hall AC, Lieb WR, Franks NP. Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes. Br J Pharmacol. 1996;118(3):493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yamashita M, Ueno T, Akaike N, Ikemoto Y. Modulation of miniature inhibitory postsynaptic currents by isoflurane in rat dissociated neurons with glycinergic synaptic boutons. Eur J Pharmacol. 2001;431(3):269–76.

    Article  CAS  PubMed  Google Scholar 

  97. Cheng G, Kendig JJ. Pre- and postsynaptic volatile anaesthetic actions on glycinergic transmission to spinal cord motor neurons. Br J Pharmacol. 2002;136(5):673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5(9):709–20.

    Article  CAS  PubMed  Google Scholar 

  99. Yamauchi M, Sekiyama H, Shimada SG, Collins JG. Halothane suppression of spinal sensory neuronal responses to noxious peripheral stimuli is mediated, in part, by both GABA(A) and glycine receptor systems. Anesthesiology. 2002;97(2):412–7.

    Article  CAS  PubMed  Google Scholar 

  100. Pistis M, Belelli D, Peters JA, Lambert JJ. The interaction of general anaesthetics with recombinant GABAA and glycine receptors expressed in Xenopus laevis oocytes: a comparative study. Br J Pharmacol. 1997;122(8):1707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu J, Wu DC, Wang YT. Allosteric potentiation of glycine receptor chloride currents by glutamate. Nat Neurosci. 2010;13(10):1225–32. [published correction appears in Nat Neurosci. 2011 Sep;14(9):1217].

    Article  CAS  PubMed  Google Scholar 

  102. Fodor L, Boros A, Dezso P, Maksay G. Expression of heteromeric glycine receptor-channels in rat spinal cultures and inhibition by neuroactive steroids. Neurochem Int. 2006;49(6):577–83.

    Article  CAS  PubMed  Google Scholar 

  103. Ahrens J, Leuwer M, Demir R, Krampfl K, Foadi N, Haeseler G. The anaesthetic steroid alphaxalone positively modulates alpha1-glycine receptor function. Pharmacology. 2008;82(3):228–32.

    Article  CAS  PubMed  Google Scholar 

  104. Jin X, Covey DF, Steinbach JH. Kinetic analysis of voltage-dependent potentiation and block of the glycine alpha 3 receptor by a neuroactive steroid analogue. J Physiol. 2009;587(Pt 5):981–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chesnoy-Marchais D. Potentiation of chloride responses to glycine by three 5-HT3 antagonists in rat spinal neurones. Br J Pharmacol. 1996;118(8):2115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang Z, Ney A, Cromer BA, Ng HL, Parker MW, Lynch JW. Tropisetron modulation of the glycine receptor: femtomolar potentiation and a molecular determinant of inhibition. J Neurochem. 2007;100(3):758–69.

    Article  CAS  PubMed  Google Scholar 

  107. Supplisson S, Chesnoy-Marchais D. Glycine receptor beta subunits play a critical role in potentiation of glycine responses by ICS-205,930. Mol Pharmacol. 2000;58(4):763–70.

    Article  CAS  PubMed  Google Scholar 

  108. Joshi PR, Suryanarayanan A, Hazai E, Schulte MK, Maksay G, Bikádi Z. Interactions of granisetron with an agonist-free 5-HT3A receptor model. Biochemistry. 2006;45(4):1099–105.

    Article  CAS  PubMed  Google Scholar 

  109. Nevin ST, Cromer BA, Haddrill JL, Morton CJ, Parker MW, Lynch JW. Insights into the structural basis for zinc inhibition of the glycine receptor. J Biol Chem. 2003;278(31):28985–92.

    Article  CAS  PubMed  Google Scholar 

  110. Miller PS, Topf M, Smart TG. Mapping a molecular link between allosteric inhibition and activation of the glycine receptor. Nat Struct Mol Biol. 2008;15(10):1084–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Laube B, Kuhse J, Betz H. Kinetic and mutational analysis of Zn2+ modulation of recombinant human inhibitory glycine receptors. J Physiol. 2000;522 Pt 2(Pt 2):215–30.

    Article  CAS  PubMed  Google Scholar 

  112. Miller PS, Beato M, Harvey RJ, Smart TG. Molecular determinants of glycine receptor alphabeta subunit sensitivities to Zn2+−mediated inhibition. J Physiol. 2005;566(Pt 3):657–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jin GL, Su YP, Liu M, et al. Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales)—a review of their phytochemistry, pharmacology, toxicology and traditional use. J Ethnopharmacol. 2014;152(1):33–52.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang JY, Gong N, Huang JL, Guo LC, Wang YX. Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors. Pain. 2013;154(11):2452–62.

    Article  CAS  PubMed  Google Scholar 

  115. Umbricht D, Alberati D, Martin-Facklam M, et al. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiat. 2014;71(6):637–46.

    Article  CAS  Google Scholar 

  116. Kantrowitz JT, Nolan KA, Epstein ML, et al. Neurophysiological effects of Bitopertin in schizophrenia. J Clin Psychopharmacol. 2017;37(4):447–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Singer P, Dubroqua S, Yee BK. Inhibition of glycine transporter 1: the yellow brick road to new schizophrenia therapy? Curr Pharm Des. 2015;21(26):3771–87.

    Article  CAS  PubMed  Google Scholar 

  118. Bugarski-Kirola D, Iwata N, Sameljak S, et al. Efficacy and safety of adjunctive bitopertin versus placebo in patients with suboptimally controlled symptoms of schizophrenia treated with antipsychotics: results from three phase 3, randomised, double-blind, parallel-group, placebo-controlled, multicentre studies in the SearchLyte clinical trial programme. Lancet Psychiatry. 2016;3(12):1115–28.

    Article  PubMed  Google Scholar 

  119. Tsai G, Lane HY, Yang P, Chong MY, Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2004;55(5):452–6.

    Article  CAS  PubMed  Google Scholar 

  120. Singh SP, Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs. 2011;25(10):859–85.

    Article  CAS  PubMed  Google Scholar 

  121. Dang YH, Ma XC, Zhang JC, et al. Targeting of NMDA receptors in the treatment of major depression. Curr Pharm Des. 2014;20(32):5151–9.

    Article  CAS  PubMed  Google Scholar 

  122. Glycine transporters. Br J Pharmacol. 2009;158(Suppl 1): S195–6.

    Google Scholar 

  123. Zeilhofer HU, Acuña MA, Gingras J, Yévenes GE. Glycine receptors and glycine transporters: targets for novel analgesics? Cell Mol Life Sci. 2018;75(3):447–65.

    Article  CAS  PubMed  Google Scholar 

  124. Bradaïa A, Schlichter R, Trouslard J. Role of glial and neuronal glycine transporters in the control of glycinergic and glutamatergic synaptic transmission in lamina X of the rat spinal cord. J Physiol. 2004;559(Pt 1):169–86. [published correction appears in J Physiol. 2004 Sep 15;559(Pt 3):985].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Harvey RJ, Rigo JM. Glycinergic transmission: physiological, developmental and pathological implications. Front Mol Neurosci. 2010;3:115. Published 2010 Aug 19.

    PubMed  PubMed Central  Google Scholar 

  126. Rees MI, Harvey K, Ward H, et al. Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem. 2003;278(27):24688–96.

    Article  CAS  PubMed  Google Scholar 

  127. Bode A, Lynch JW. The impact of human hyperekplexia mutations on glycine receptor structure and function. Mol Brain. 2014;7:2. Published 2014 Jan 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Suhren O, Bruyn GW, Tuynman JA. Hyperexplexia: a hereditary startle syndrome. J Neurol Sci. 1966;3(6):577–605.

    Article  Google Scholar 

  129. Thomas RH, Chung SK, Wood SE, et al. Genotype-phenotype correlations in hyperekplexia: apnoeas, learning difficulties and speech delay. Brain. 2013;136(Pt 10):3085–95.

    Article  PubMed  Google Scholar 

  130. Conter C, Rolland MO, Cheillan D, Bonnet V, Maire I, Froissart R. Genetic heterogeneity of the GLDC gene in 28 unrelated patients with glycine encephalopathy. J Inherit Metab Dis. 2006;29(1):135–42.

    Article  CAS  PubMed  Google Scholar 

  131. Hoover-Fong JE, Shah S, Van Hove JL, Applegarth D, Toone J, Hamosh A. Natural history of nonketotic hyperglycinemia in 65 patients. Neurology. 2004;63(10):1847–53.

    Article  CAS  PubMed  Google Scholar 

  132. Korman SH, Wexler ID, Gutman A, Rolland MO, Kanno J, Kure S. Treatment from birth of nonketotic hyperglycinemia due to a novel GLDC mutation. Ann Neurol. 2006;59(2):411–5.

    Article  CAS  PubMed  Google Scholar 

  133. Tada K. Nonketotic hyperglycinemia: clinical and metabolic aspects. Enzyme. 1987;38(1–4):27–35.

    Article  CAS  PubMed  Google Scholar 

  134. Kanno J, Hutchin T, Kamada F, et al. Genomic deletion within GLDC is a major cause of non-ketotic hyperglycinaemia. J Med Genet. 2007;44(3):e69.

    Article  PubMed  PubMed Central  Google Scholar 

  135. McKeon A, Robinson MT, McEvoy KM, et al. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Arch Neurol. 2012;69(2):230–8.

    Article  PubMed  Google Scholar 

  136. Gluck L, Hernandez AL, Wesley SF, Fulbright RK, Longbrake EE, Stathopoulos P. Therapeutic considerations in a case of progressive encephalomyelitis with rigidity and myoclonus. J Neurol Sci. 2020;416:116993. [published online ahead of print, 2020 Jun 18].

    Article  PubMed  PubMed Central  Google Scholar 

  137. Carvajal-González A, Leite MI, Waters P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain. 2014;137(Pt 8):2178–92. [published correction appears in brain. 2014 Dec;137(Pt 12): e315. Press, Raomand [corrected to press, Rayomand]].

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hinson SR, Lopez-Chiriboga AS, Bower JH, et al. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders. Neurol Neuroimmunol Neuroinflamm. 2018;5(2):e438. Published 2018 Jan 23.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Gomeza J, Hülsmann S, Ohno K, et al. Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron. 2003;40(4):785–96. [published correction appears in neuron. 2004 Feb 19;41(4):675].

    Article  CAS  PubMed  Google Scholar 

  140. Shen HY, van Vliet EA, Bright KA, et al. Glycine transporter 1 is a target for the treatment of epilepsy. Neuropharmacology. 2015;99:554–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Winkelmann A, Maggio N, Eller J, et al. Changes in neural network homeostasis trigger neuropsychiatric symptoms. J Clin Invest. 2014;124(2):696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Eichler SA, Kirischuk S, Jüttner R, et al. Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J Cell Mol Med. 2008;12(6B):2848–66. [published correction appears in J Cell Mol Med. 2012 Apr;16(4):959. Schafermeier, Philipp K [corrected to Schaefermeier, Philipp K]].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang LH, Gong N, Fei D, Xu L, Xu TL. Glycine uptake regulates hippocampal network activity via glycine receptor-mediated tonic inhibition. Neuropsychopharmacology. 2008;33(3):701–11.

    Article  CAS  PubMed  Google Scholar 

  144. Javitt DC. Glycine transport inhibitors in the treatment of schizophrenia. Handb Exp Pharmacol. 2012;213:367–99.

    Article  CAS  Google Scholar 

  145. Boison D. The biochemistry and epigenetics of epilepsy: focus on adenosine and glycine. Front Mol Neurosci. 2016;9:26. Published 2016 Apr 13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Kegeles LS, Abi-Dargham A, Zea-Ponce Y, et al. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry. 2000;48(7):627–40.

    Article  CAS  PubMed  Google Scholar 

  147. Harvey RJ, Yee BK. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov. 2013;12(11):866–85.

    Article  CAS  PubMed  Google Scholar 

  148. Lynch JW, Callister RJ. Glycine receptors: a new therapeutic target in pain pathways. Curr Opin Investig Drugs. 2006;7(1):48–53.

    CAS  PubMed  Google Scholar 

  149. Vengeliene V, Bilbao A, Molander A, Spanagel R. Neuropharmacology of alcohol addiction. Br J Pharmacol. 2008;154(2):299–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jonsson S, Adermark L, Ericson M, Söderpalm B. The involvement of accumbal glycine receptors in the dopamine-elevating effects of addictive drugs. Neuropharmacology. 2014;82:69–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All the pictures in this chapter were prepared using Biorender premium software. The tables were redrawn using information from the reference article mentoned alongside them.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Idiculla, P.S., Nagarajan, E., Murala, S., Bollu, P.C. (2022). Glycine. In: Bollu, P.C. (eds) Neurochemistry in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-07897-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07897-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07896-5

  • Online ISBN: 978-3-031-07897-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics