Skip to main content

Endorphins

  • Chapter
  • First Online:
Neurochemistry in Clinical Practice

Abstract

Endorphins are naturally occurring polypeptides in the central and peripheral nervous systems that modulate pain perception. First discovered in 1973, these endorphins are mainly three different types. Interaction with the μ-receptors is thought to bring out the analgesic effect of endorphins. The same receptor is the target for opioid medications also. This chapter is a brief introduction to the different types of endorphins, their biochemical profile, and their physiological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li Y, et al. Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins. Future Med Chem. 2012;4(2):205–26.

    Article  CAS  PubMed  Google Scholar 

  2. Sforzo G. Opioids and exercise. Sports Med. 1989;7(2):109–24.

    Article  CAS  PubMed  Google Scholar 

  3. Cozzolino D, et al. Acute effects of β-endorphin on cardiovascular function in patients with mild to moderate chronic heart failure. Am Heart J. 2004;148(3):530.

    Article  CAS  Google Scholar 

  4. Ambinder RF, Tucker H, Schuster M. Possible role of endogenous opiate peptides (endorphins) in the pathogenesis of irritable bowel syndrome. Gastroenterology. 1979;76(5 II):1304.

    Google Scholar 

  5. Ambinder RF, Schuster MM. Endorphins: new gut peptides with a familiar face. Gastroenterology. 1979;77(5):1132–40.

    Article  CAS  PubMed  Google Scholar 

  6. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975;258(5536):577–80.

    Article  CAS  PubMed  Google Scholar 

  7. Berezniuk I, Fricker LD. In: Pasternak GW, editor. “Endogenous opioids”, the opiate receptors, the receptors. Totowa, NJ: Humana Press; 2011. p. 93–120.

    Chapter  Google Scholar 

  8. Corbett AD, Henderson G, McKnight AT, Paterson SJ. 75 years of opioid research: the exciting but vain quest for the holy grail. Br J Pharmacol. 2006;147(Suppl 1):S153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simantov R, Snyder SH. Morphine-like peptides in mammalian brain: isolation, structure elucidation, and interactions with the opiate receptor. Proc Natl Acad Sci U S A. 1976;73(7):2515–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McLaughlin PJ, Zagon IS. POMC-derived opioid peptides. In: Handbook of biologically active peptides. Amsterdam: Elsevier; 2013. p. 1592–5. https://doi.org/10.1016/b978-0-12-385095-9.00217-7.

    Chapter  Google Scholar 

  11. Smyth DG. 60 Years of POMC: lipotropin and beta-endorphin: a perspective. J Mol Endocrinol. 2016;56(4):T13–25.

    Article  CAS  PubMed  Google Scholar 

  12. Feldberg W, Smyth DG. C-fragment of Lipotropin-an endogenous potent analgesic peptide. Br J Pharmacol. 1977;60(3):445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guillemin R, Vargo T, Rossier J, et al. Beta-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science. 1977;197:1367–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sharp B, Linner K. What do we know about the expression of proopiomelanocortin transcripts and related peptides in lymphoid tissue? Endocrinology. 1993;133:1921A–B.

    Article  CAS  PubMed  Google Scholar 

  15. Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med. 1995;332(25):1685–90.

    Article  CAS  PubMed  Google Scholar 

  16. Mousa S, Shakibaei M, Sitte N, Schäfer M, Stein C. Subcellular pathways of beta-endorphin synthesis, processing, and release from immunocytes in infl ammatory pain. Endocrinology. 2004;145(3):1331–41.

    Article  CAS  PubMed  Google Scholar 

  17. Merenlender-Wagner A, Dikshtein Y, Yadid G. The β-endorphin role in stress-related psychiatric disorders. Curr Drug Targets. 2009;10(11):1096–108.

    Article  CAS  PubMed  Google Scholar 

  18. Miller R. Miller’s anesthesia. 6th ed. Philadelphia, PA: Elsevier; 2005. p. 382–6.

    Google Scholar 

  19. Brunton L. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006. p. 547–59.

    Google Scholar 

  20. Majumdar S, et al. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. Proc Natl Acad Sci. 2011;108(49):19778–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Selley DE, Bidlack JM. Effects of beta-endorphin on mu and delta opioid receptor-coupled G-protein activity: low-km GTPase studies. J Pharmacol Exp Ther. 1992;263(1):99–104.

    CAS  PubMed  Google Scholar 

  22. Stratton SA. Role of endorphins in pain modulation. J Orthop Sports Phys Ther. 1982;3(4):200–5.

    Article  CAS  PubMed  Google Scholar 

  23. Terenius L. Endorphins and pain. In: Hormones and the brain. Berlin: Springer; 1980. p. 231–40.

    Chapter  Google Scholar 

  24. Dubois M, Pickar D, Cohen M, Gadde P, Macnamara T, Bunney W. Effects of fentanyl on the response of plasma beta-endorphin immunoreactivity to surgery. Anesthesiology. 1982;57:468–72.

    Article  CAS  PubMed  Google Scholar 

  25. Cork R, Haneroff S, Weiss J. Effects of halothane and fentanyl anesthesia on plasma beta-endorphin immunoreactivity during cardiac surgery. Anesth Analg. 1985;64:677–8.

    Article  CAS  PubMed  Google Scholar 

  26. Przewlocki R. Opioid abuse and brain gene expression. Eur J Pharmacol. 2004;500(1–3):331–49.

    Article  CAS  PubMed  Google Scholar 

  27. Wardlaw S, Kim J, Sobieszczyk S. Effect of morphine on proopiomelanocortin gene expression and peptide levels in the hypothalamus. Mol Brain Res. 1996;41(1–2):140–7.

    Article  CAS  PubMed  Google Scholar 

  28. Bronstein D, Przewlocki R, Akil H. Effects of morphine treatment on pro-opiomelanocortin systems in rat brain. Brain Res. 1990;519(1–2):102–11.

    Article  CAS  PubMed  Google Scholar 

  29. DuPen A, Shen D, Ersek M. Mechanisms of opioid-induced tolerance and hyperalgesia. Pain Manag Nurs. 2007;8(3):113–21.

    Article  PubMed  Google Scholar 

  30. West B. Understanding endorphins: our natural pain relief system. Nursing. 1981;11(2):50–3.

    Article  CAS  PubMed  Google Scholar 

  31. Simonnet G, Rivat C. Opioid-induced hyperalgesia: abnormal or normal pain? Neuroreport. 2003;14(1):1–7.

    Article  PubMed  Google Scholar 

  32. British Medical Journal editorial. How does acupuncture work? Br Med J. 1981;283:746–8.

    Article  Google Scholar 

  33. Harber VJ, Sutton JR. Endorphins and exercise. Sports Med. 1984;1:154–71.

    Article  CAS  PubMed  Google Scholar 

  34. Balchin R, et al. Sweating away depression? The impact of intensive exercise on depression. J Affect Disord. 2016;200:218–21.

    Article  PubMed  Google Scholar 

  35. Antunes HK, et. al. Exercise deprivation increases negative mood in exercise-addicted subjects and modifies their biochemical markers. Physiol Behav. 2016;156:182–90.

    Article  CAS  PubMed  Google Scholar 

  36. Pullan PT, Clement-Jones V, Corder R, et al. Ectopic production of methionine enkephalin and beta-endorphin. Br Med J. 1980;280:758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wahlstrom A, Terenius L. Endorphin hypothesis of schizophrenia. In: Emrich HM, editor. The role of endorphins in neuropsychiatry. Basel: Karger; 1981. p. 181–91.

    Google Scholar 

Download references

Acknowledgments

All the pictures in this chapter were prepared using Biorender premium software. The tables were redrawn using information from the reference article mentoned alongside them.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mannem, M., Mehta, T.R., Murala, S., Bollu, P.C. (2022). Endorphins. In: Bollu, P.C. (eds) Neurochemistry in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-07897-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07897-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07896-5

  • Online ISBN: 978-3-031-07897-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics