Skip to main content

Sensitivity Analysis of Adhesion in Computational Model of Elastic Doublet

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

This work introduces a computational model of elastic double cluster. We describe a method to create a partially flattened spherical cell and a mirroring process that creates a symmetrical double cluster with desired adhesion surface. The main focus is on the adhesion between the two cells modeled by repulsive-attractive Lennard-Jones potential. We study the stability of the adhesion with respect to the parameters of the Lennard-Jones potential and to the elasticity of the cells. Based on these, a baseline cluster is created and calibrated to a specific separation force using computational experiment that mimics a dual micropipette assay. This cluster is then immersed into elongation flow to create a parallel between the two types of cell stretching experiments: one that mechanically pulls the cell membrane and another where fluid flow creates stress on the membrane. Thus validated, our model of adhesion can be used in more complex clusters and serve as a building block in future computational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, K.J., de Guillebon, A., Hughes, A.D., Wang, W., King, M.R.: Effect of circulating tumor cell aggregate configuration on hemodynamic transport and wall contact. Math. Biosci. 294, 181–194 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Au, S.H., et al.: Clusters of circulating tumor cells traverse capillary-sized vessels. Proc. Natl. Acad. Sci. 113(18), 4947–4952 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bithi, S.S., Vanapalli, S.A.: Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters. Sci. Rep. 7(1), 1–12 (2017)

    Article  Google Scholar 

  4. Bonnet, J., et al.: Mitotic arrest affects clustering of tumor cells. Cell Div. 16(1), 1–13 (2021)

    Article  Google Scholar 

  5. Choi, J.W., Kim, J.K., Yang, Y.J., Kim, P., Yoon, K.H., Yun, S.H.: Urokinase exerts antimetastatic effects by dissociating clusters of circulating tumor cells. Can. Res. 75(21), 4474–4482 (2015)

    Article  CAS  Google Scholar 

  6. Cimrák, I., Jančigová, I.: Computational Blood Cell Mechanics, 1st edn. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  7. Dabagh, M., Gounley, J., Randles, A.: Localization of rolling and firm-adhesive interactions between circulating tumor cells and the microvasculature wall. Cell. Mol. Bioeng. 13(2), 141–154 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daoudi, M., et al.: Enhanced adhesive capacities of the naturally occurring ile249-met280 variant of the chemokine receptor cx3cr1. J. Biol. Chem. 279(19), 19649–57 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Edd, J.F., et al.: Microfluidic concentration and separation of circulating tumor cell clusters from large blood volumes. Lab Chip 20(3), 558–567 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hochmuth, R.M.: Micropipette aspiration of living cells. J. Biomech. 33(1), 15–22 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Jančigová, I., Kovalčíková, K., Bohiniková, A., Cimrák, I.: Spring-network model of red blood cell: From membrane mechanics to validation. Int. J. Numer. Meth. Fluids 92(10), 1368–1393 (2020)

    Article  Google Scholar 

  12. Jančigová, I., Kovalčíková, K., Weeber, R., Cimrák, I.: Pyoif: computational tool for modelling of multi-cell flows in complex geometries. PLOS Comput. Biol. 16(10), 1–21 (2020)

    Article  Google Scholar 

  13. King, M.R., et al.: A physical sciences network characterization of circulating tumor cell aggregate transport. Am. J. Physiol. Cell Physiol. 308(10), C792–C802 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kovalcikova, K., Bachraty, H., Bachrata, K., Buzakova, K.: Numerical experiment characteristics dependence on red blood cell parameters, pp. 286–292 (2021)

    Google Scholar 

  15. Maître, J.L., et al.: Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338(6104), 253–256 (2012)

    Article  PubMed  Google Scholar 

  16. Marrella, A., et al.: High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS ONE 16(1), e0245536 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mutlu, B.R., et al.: In-flow measurement of cell-cell adhesion using oscillatory inertial microfluidics. Lab Chip 20(9), 1612–1620 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. PyOIF: Computational Tool for Modelling of Multi-Cell Flows in Complex Geometries: Resources webpage for pyoif. online January 2022. https://cellinfluidfriunizask/resources-espresso/

    Google Scholar 

  19. Rapaport, D.C.: The Art of Molecular Dynamics Simulation, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  20. Shaw Bagnall, J., Byun, S., Begum, S.E.A.: Deformability of tumor cells versus blood cells. Sci Rep 5(1), 1–11 (2015)

    Article  Google Scholar 

  21. TruongVo, T., et al.: Microfluidic channel for characterizing normal and breast cancer cells. J. Micromech. Microeng. 27(3), 035017 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Operational Program “Integrated Infrastructure” of the project “Integrated strategy in the development of personalized medicine of selected malignant tumor diseases and its impact on life quality”, ITMS code: 313011V446, co-financed by resources of European Regional Development Fund.

This work was also supported by the Slovak Research and Development Agency (contract number APVV-15-0751).

James J. Feng acknowledges support by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant No. 2019-04162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alžbeta Bohiniková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bohiniková, A., Jančigová, I., Cimrák, I., Feng, J.J. (2022). Sensitivity Analysis of Adhesion in Computational Model of Elastic Doublet. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics