Skip to main content

A Distance Geometry Procedure Using the Levenberg-Marquardt Algorithm and with Applications in Biology but Not only

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13347))

Abstract

We revisit a simple, yet capable to provide good solutions, procedure for solving the Distance Geometry Problem (DGP). This procedure combines two main components: the first one identifying an initial approximated solution via semidefinite programming, which is thereafter projected to the target dimension via PCA; and another component where this initial solution is refined by locally minimizing the Smooth STRESS function. In this work, we propose the use of the projected Levenberg-Marquart algorithm for this second step. In spite of the simplicity, as well as of its heuristic character, our experiments show that this procedure is able to exhibit good performances in terms of quality of the solutions for most of the instances we have selected for our experiments. Moreover, it seems to be promising not only for the DGP application arising in structural biology, which we considered in our computational experiments, but also in other ongoing studies related to the DGP and its applications: we finally provide a general discussion on how extending the presented ideas to other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/mucherino/mdjeep.

References

  1. Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H., Donaldson, L., Li, M.: Determining protein structures from NOESY distance constraints by semidefinite programming. J. Comput. Biol. 20(4), 296–310 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berman, H., et al.: Protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral projected gradient methods: review and perspectives. J. Stat. Softw. 60(i03), 21 (2014)

    Google Scholar 

  4. Biswas, P., Liang, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. 2(2), 188–220 (2006)

    Article  Google Scholar 

  5. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. John Wiley & Sons (1988)

    Google Scholar 

  6. D’Ambrosio, C., Vu, K., Lavor, C., Liberti, L., Maculan, N.: New error measures and methods for realizing protein graphs from distance data. Discrete Comput. Geom. 57(2), 371–418 (2017). https://doi.org/10.1007/s00454-016-9846-7

    Article  Google Scholar 

  7. Gonçalves, D.S., Mucherino, A., Lavor, C., Liberti, L.: Recent advances on the interval distance geometry problem. J. Glob. Optim. 69(3), 525–545 (2017)

    Article  Google Scholar 

  8. Gonçalves, D.S., Gonçalves, M.L.N., Oliveira, F.R.: An inexact projected LM type algorithm for solving convex constrained nonlinear equations. J. Comput. Appl. Math. 391(1), 113421 (2021)

    Google Scholar 

  9. Grippo, L., Lampariello, F., Lucidi, S.: A truncated newton method with nonmonotone line search for uncontrained optimization. J. Optim. Theory Appl. 60, 401–419 (1989)

    Google Scholar 

  10. Hengeveld, S.B., Mucherino, A.: On the representation of human motions and distance-based retargeting. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS21), Workshop on Computational Optimization (WCO21), pp. 181–189. Sofia, Bulgaria (2021)

    Google Scholar 

  11. Ho, E.S.L., Komura, T., Tai, C-L.: Spatial relationship preserving character motion adaptation. In: Proceedings of the \(37^{th}\) International Conference and Exhibition on Computer Graphics and Interactive Techniques. ACM Transactions on Graphics, vol. 29, no. 4, p. 8 (2010)

    Google Scholar 

  12. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Google Scholar 

  13. Mucherino, A., Gonçalves, D.S.: An approach to dynamical distance geometry. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol. 10589, pp. 821–829. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68445-1_94

  14. Mucherino, A., Gonçalves, D.S., Liberti, L., Lin, J-H., Lavor, C., Maculan, N.: MD-jeep: a new release for discretizable distance geometry problems with interval data. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS20), Workshop on Computational Optimization (WCO20), pp. 289–294. Sofia, Bulgaria (2020)

    Google Scholar 

  15. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.), Distance Geometry: Theory, Methods and Applications, p. 410. Springer (2013)

    Google Scholar 

  16. Mucherino, A., Liberti, L., Lavor, C.: An implementation of a branch and prune algorithm for distance geometry problems. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 186–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6_34

  17. Mucherino, A., Lin, J-H.: An efficient exhaustive search for the discretizable distance geometry problem with interval Data. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS19), Workshop on Computational Optimization (WCO19), Leipzig, Germany, pp. 135–141 (2019)

    Google Scholar 

  18. Takane, Y., Young, F.W., de Leeuw, J.: Nonmetric individual multidimensional scaling: an alternating least squares method with optimal scaling features. Psychometrika 42(1), 7–67 (1977)

    Google Scholar 

  19. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3 - a matlab software package for semidefinite programming. Optim. Meth. Softw. 11, 545–581 (1999)

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to CAPES/Brazil for the CAPES-PRINT project, process number 88887.578009/2020-00, allowing AM to visit DG at UFSC, Florianópolis (SC, Brazil) for a 2-week time in December 2021. Most of the presented work was performed during such a visit. AM is also thankful to the ANR for the support on the international France-Taiwan project multiBioStruct (ANR-19-CE45-0019). DG thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant 305213/2021-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas S. Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonçalves, D.S., Mucherino, A. (2022). A Distance Geometry Procedure Using the Levenberg-Marquardt Algorithm and with Applications in Biology but Not only. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics