Skip to main content

Evolution and Origins of Nervous Systems

  • Chapter
  • First Online:
Neurogenetics

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 798 Accesses

Abstract

How the nervous systems appeared during evolution to become such a crucial feature of animals remains one of the most fascinating unanswered questions in biology. From the origin of neurons to their diverse organizations into nerve nets, brains, and nerve cords, the evolutionary mechanisms that led to the incredible diversity of nervous systems we can observe in nature are still mostly unknown. Many important questions are still debated among researchers to uncover the mysteries of the evolution of the nervous system. This chapter provides a short overview of the ongoing debates and hypotheses regarding the origin of neurons in early-branching metazoans as well as in some unicellular organisms. We describe the current knowledge about the organization and the unsuspected complexity of nerve nets in Cnidaria and highlight some of the current hypotheses about the centralization of nervous system in Bilateria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burkhardt P, Stegmann CM, Cooper B, Kloepper TH, Imig C, Varoqueaux F, et al. Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. Proc Natl Acad Sci U S A. 2011;108(37):15264–9.

    Article  CAS  Google Scholar 

  2. Brunet T, Larson BT, Linden TA, Vermeij MJA, McDonald K, King N. Light-regulated collective contractility in a multicellular choanoflagellate. Science. 2019;366(6463):326–34.

    Article  CAS  Google Scholar 

  3. Smith CL, Varoqueaux F, Kittelmann M, Azzam RN, Cooper B, Winters CA, et al. Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr Biol. 2014;24(14):1565–72.

    Article  CAS  Google Scholar 

  4. Heyland A, Croll R, Goodall S, Kranyak J, Wyeth R. Trichoplax adhaerens, an enigmatic basal metazoan with potential. Methods Mol Biol. 2014;1128:45–61.

    Article  CAS  Google Scholar 

  5. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, et al. The Trichoplax genome and the nature of placozoans. Nature. 2008;454(7207):955–60.

    Article  CAS  Google Scholar 

  6. Laumer CE, Gruber-Vodicka H, Hadfield MG, Pearse VB, Riesgo A, Marioni JC, et al. Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. Elife. 2018;7

    Google Scholar 

  7. Mah JL, Christensen-Dalsgaard KK, Leys SP. Choanoflagellate and choanocyte collar-flagellar systems and the assumption of homology. Evol Dev. 2014;16(1):25–37.

    Article  CAS  Google Scholar 

  8. Laundon D, Larson BT, McDonald K, King N, Burkhardt P. The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLoS Biol. 2019;17(4):e3000226.

    Article  Google Scholar 

  9. Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342(6164):1242592.

    Article  Google Scholar 

  10. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510(7503):109–14.

    Article  CAS  Google Scholar 

  11. Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, et al. Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol. 2017;1(11):1737–46.

    Article  Google Scholar 

  12. Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N, et al. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr Biol. 2017;27(24):3864–70 e4.

    Article  CAS  Google Scholar 

  13. Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H, et al. Genomic data do not support comb jellies as the sister group to all other animals. Proc Natl Acad Sci U S A. 2015;112(50):15402–7.

    Article  CAS  Google Scholar 

  14. Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol. 2017;27(7):958–67.

    Article  CAS  Google Scholar 

  15. Nath RD, Bedbrook CN, Abrams MJ, Basinger T, Bois JS, Prober DA, et al. The jellyfish cassiopea exhibits a sleep-like state. Curr Biol. 2017;27(19):2984–90 e3.

    Article  CAS  Google Scholar 

  16. Layden MJ, Rentzsch F, Rottinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. Wiley Interdiscip Rev Dev Biol. 2016;5(4):408–28.

    Article  Google Scholar 

  17. Stefanik DJ, Friedman LE, Finnerty JR. Collecting, rearing, spawning and inducing regeneration of the starlet sea anemone, Nematostella vectensis. Nat Protoc. 2013;8(5):916–23.

    Article  Google Scholar 

  18. Calcino AD, Fernandez-Valverde SL, Taft RJ, Degnan BM. Diverse RNA interference strategies in early-branching metazoans. BMC Evol Biol. 2018;18(1):160.

    Article  CAS  Google Scholar 

  19. Ikmi A, McKinney SA, Delventhal KM, Gibson MC. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun. 2014;5:5486.

    Article  CAS  Google Scholar 

  20. Renfer E, Technau U. Meganuclease-assisted generation of stable transgenics in the sea anemone Nematostella vectensis. Nat Protoc. 2017;12(9):1844–54.

    Article  CAS  Google Scholar 

  21. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317(5834):86–94.

    Article  CAS  Google Scholar 

  22. Havrilak JA, Faltine-Gonzalez D, Wen Y, Fodera D, Simpson AC, Magie CR, et al. Characterization of NvLWamide-like neurons reveals stereotypy in Nematostella nerve net development. Dev Biol. 2017;431(2):336–46.

    Article  CAS  Google Scholar 

  23. Dupre C, Yuste R. Non-overlapping neural networks in Hydra vulgaris. Curr Biol. 2017;27(8):1085–97.

    Article  CAS  Google Scholar 

  24. Sebe-Pedros A, Saudemont B, Chomsky E, Plessier F, Mailhe MP, Renno J, et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell. 2018;173(6):1520–34 e20.

    Article  CAS  Google Scholar 

  25. Siebert S, Farrell JA, Cazet JF, Abeykoon Y, Primack AS, Schnitzler CE, et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science. 2019;365(6451)

    Google Scholar 

  26. Fedonkin MA, Waggoner BM. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature. 1997;388(6645):868–71.

    Article  CAS  Google Scholar 

  27. Arendt D, Tosches MA, Marlow H. From nerve net to nerve ring, nerve cord and brain—evolution of the nervous system. Nat Rev Neurosci. 2016;17(1):61–72.

    Article  CAS  Google Scholar 

  28. Arendt D, Benito-Gutierrez E, Brunet T, Marlow H. Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution. Philos Trans R Soc Lond B Biol Sci. 2015;370(1684)

    Google Scholar 

  29. Finnerty JR. Did internal transport, rather than directed locomotion, favor the evolution of bilateral symmetry in animals? Bioessays. 2005;27(11):1174–80.

    Article  Google Scholar 

  30. Holland LZ. Evolution of basal deuterostome nervous systems. J Exp Biol. 2015;218(Pt 4):637–45.

    Article  Google Scholar 

  31. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, et al. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature. 2011;470(7333):255–8.

    Article  CAS  Google Scholar 

  32. Cannon JT, Vellutini BC, Smith J 3rd, Ronquist F, Jondelius U, Hejnol A. Xenacoelomorpha is the sister group to Nephrozoa. Nature. 2016;530(7588):89–93.

    Article  CAS  Google Scholar 

  33. Philippe H, Poustka AJ, Chiodin M, Hoff KJ, Dessimoz C, Tomiczek B, et al. Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Ambulacraria. Curr Biol. 2019;29(11):1818–26 e6.

    Article  CAS  Google Scholar 

  34. Gavilan B, Perea-Atienza E, Martinez P. Xenacoelomorpha: a case of independent nervous system centralization? Philos Trans R Soc Lond B Biol Sci. 2016;371(1685):20150039.

    Article  Google Scholar 

  35. Martin-Duran JM, Pang K, Borve A, Le HS, Furu A, Cannon JT, et al. Convergent evolution of bilaterian nerve cords. Nature. 2018;553(7686):45–50.

    Article  CAS  Google Scholar 

  36. Achatz JG, Martinez P. The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Front Zool. 2012;9(1):27.

    Article  Google Scholar 

  37. Bery A, Cardona A, Martinez P, Hartenstein V. Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis. Dev Genes Evol. 2010;220(3-4):61–76.

    Article  Google Scholar 

  38. Perea-Atienza E, Gavilan B, Chiodin M, Abril JF, Hoff KJ, Poustka AJ, et al. The nervous system of Xenacoelomorpha: a genomic perspective. J Exp Biol. 2015;218(Pt 4):618–28.

    Article  Google Scholar 

  39. Semmler H, Chiodin M, Bailly X, Martinez P, Wanninger A. Steps towards a centralized nervous system in basal bilaterians: insights from neurogenesis of the acoel Symsagittifera roscoffensis. Dev Growth Differ. 2010;52(8):701–13.

    Article  CAS  Google Scholar 

  40. Hulett RE, Potter D, Srivastava M. Neural architecture and regeneration in the acoel Hofstenia miamia. Proc Biol Sci. 1931;2020(287):20201198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G. Sprecher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duruz, J., Sprecher, S.G. (2023). Evolution and Origins of Nervous Systems. In: Egger, B. (eds) Neurogenetics . Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-031-07793-7_8

Download citation

Publish with us

Policies and ethics