Ali, A., Shamsuddin, S.M., Ralescu, A.: Classification with class imbalance problem: a review. Int. J. Adv. Soft Comput. Appl. 7(3), 176–204 (2015)
Google Scholar
Basgall, M.J., Hasperué, W., Naiouf, M., Fernández, A., Herrera, F.: SMOTE-BD: an exact and scalable oversampling method for imbalanced classification in big data. In: VI Jornadas de Cloud Computing & Big Data (JCC&BD) (La Plata 2018) (2018)
Google Scholar
Basgall, M.J., Hasperué, W., Naiouf, M., Fernández, A., Herrera, F.: An analysis of local and global solutions to address big data imbalanced classification: a case study with SMOTE preprocessing. In: Naiouf, M., Chichizola, F., Rucci, E. (eds.) JCC&BD 2019. CCIS, vol. 1050, pp. 75–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27713-0_7
CrossRef
Google Scholar
Blagus, R., Lusa, L.: SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 14(106), 1–16 (2013)
Google Scholar
Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modelling under imbalanced distributions. CoRR abs/1505.01658 (2015). http://arxiv.org/abs/1505.01658
Brennan, P.: A comprehensive survey of methods for overcoming the class imbalance problem in fraud detection. Master’s thesis, Institute of Technology Blanchardstown, Dublin, Ireland (2012)
Google Scholar
Chang, C.C., Lin, C.J.: LIBSVM. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)
CrossRef
Google Scholar
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
CrossRef
Google Scholar
Elreedy, D., Atiya, A.F.: A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance. Inf. Sci. 505, 32–64 (2019)
CrossRef
Google Scholar
Fernández, A., García, S., Herrera, F., Chawla, N.V.: SMOTE for learning from imbalanced data: progress and challenges, markin the 15-year anniversary. J. Artif. Intell. Res. 51, 863–905 (2018)
CrossRef
Google Scholar
García, V., Alejo, R., Sánchez, J.S., Sotoca, J.M., Mollineda, R.A.: Combined effects of class imbalance and class overlap on instance-based classification. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 371–378. Springer, Heidelberg (2006). https://doi.org/10.1007/11875581_45
CrossRef
Google Scholar
Hassib, E.M., El-Desouky, A.I., Labib, L.M., El-kenawy, E.S.M.: WOA + BRNN: an imbalanced big data classification framework using whale optimization and deep neural network. Soft. Comput. 24(8), 5573–5592 (2020)
CrossRef
Google Scholar
Jain, A., Ratnoo, S., Kumar, D.: Addressing class imbalance problem in medical diagnosis: a genetic algorithm approach. In: 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), pp. 1–8 (2017)
Google Scholar
Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, Cambridge (2011)
Google Scholar
Joyanes Aguilar, L.: Big Data: Análisis de grandes volúmenes de datos en organizaciones. Alfaomega (2013)
Google Scholar
Kovács, G.: SMOTE-variants: a python implementation of 85 minority oversampling techniques. Neurocomputing 366, 352–354 (2019)
CrossRef
Google Scholar
Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N.: A survey on addressing high-class imbalance in big data. J. Big Data 5(1), 1–30 (2018). https://doi.org/10.1186/s40537-018-0151-6
CrossRef
Google Scholar
Maillo, J., Ramírez, S., Triguero, I., Herrera, F.: kNN-IS: an iterative spark-based design of the k-nearest neighbors classifier for big data. Knowl.-Based Syst. 117, 3–15 (2017)
CrossRef
Google Scholar
Maillo, J., Triguero, I., Herrera, F.: Redundancy and complexity metrics for big data classification: towards smart data. IEEE Access 8, 87918–87928 (2020)
CrossRef
Google Scholar
Maldonado, S., López, J., Vairetti, C.: An alternative SMOTE oversampling strategy for high-dimensional datasets. Appl. Soft Comput. 76, 380–389 (2019)
CrossRef
Google Scholar
Pengfei, J., Chunkai, Z., Zhenyu, H.: A new sampling approach for classification of imbalanced data sets with high density. In: 2014 International Conference on Big Data and Smart Computing (BIGCOMP), pp. 217–222 (2014)
Google Scholar
Saez, J.A., Galar, M., Krawczyk, B.: Addressing the overlapping data problem in classification using the one-vs-one decomposition strategy. IEEE Access 7, 83396–83411 (2019)
CrossRef
Google Scholar
Sleeman, W.C., IV., Krawczyk, B.: Multi-class imbalanced big data classification on spark. Knowl.-Based Syst. 212, 106598 (2021)
CrossRef
Google Scholar
Suárez, J.L., García, S., Herrera, F.: A tutorial on distance metric learning: mathematical foundations, algorithms, experimental analysis, prospects and challenges. Neurocomputing 425, 300–322 (2021)
CrossRef
Google Scholar