Skip to main content

A Robust Fault Diagnosis Method in Presence of Noise and Missing Information for Industrial Plants

  • 133 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13264)

Abstract

Fault diagnosis systems are necessary in industrial plants to reach high economic profits and high levels of industrial safety. For achieving these aims, it is necessary a fast detection and identification of faults that occur in the plants. However, the performance of the fault diagnosis systems, are affected by the presence of noise and missing information on the measured variables from the industrial systems. In this paper, a novel methodology for fault diagnosis in industrial plants is proposed by using computational intelligence tools. The proposal presents a robust behavior in the presence of missing data and noise in the measurements by achieving high levels of performance. The imputation process prior to the diagnosis of failures is carried out online, this being one of the advantages.

Keywords

  • Fault diagnosis
  • Missing data
  • Noise
  • Data imputation
  • Industrial plants
  • Computational intelligence

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-07750-0_4
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-07750-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Ahmed, Q., Raza, S.A., Al-Anazi, D.M.: Reliability-based fault analysis models with industrial applications: a systematic literature review. Qual. Reliab. Eng. Int. 37(4), 1307–1333 (2021). https://doi.org/10.1002/qre.2797

    CrossRef  Google Scholar 

  2. Askarian, M., Escudero, G., Graells, M., Zarghami, R., Jalali-Farahani, F., Mostoufi, N.: Fault diagnosis of chemical processes with incomplete observations: a comparative study. Comput. Chem. Eng. 84, 104–116 (2016). https://doi.org/10.1016/j.compchemeng.2015.08.018

    CrossRef  Google Scholar 

  3. Bartyś, M., Patton, R., Syfert, M., de las Heras, S., Quevedo, J.: Introduction to the DAMADICS actuator FDI benchmark study. Control Eng. Pract. 14, 577–596 (2006). https://doi.org/10.1016/j.conengprac.2005.06.015

    CrossRef  Google Scholar 

  4. Bishop, C.M.: Pattern recognition. Mach. Learn. 128(9) (2006)

    Google Scholar 

  5. Cerrada, M., et al.: A review on data-driven fault severity assessment in rolling bearings. Mech. Syst. Signal Process. 99, 169–196 (2018). https://doi.org/10.1016/j.ymssp.2017.06.012

    CrossRef  Google Scholar 

  6. Chen, X., Zhang, B., Gao, D.: Bearing fault diagnosis base on multi-scale CNN and LSTM model. J. Intell. Manuf. 32(4), 971–987 (2020). https://doi.org/10.1007/s10845-020-01600-2

    CrossRef  Google Scholar 

  7. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, London (1982)

    MATH  Google Scholar 

  8. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000). https://doi.org/10.1162/089976600300015015

    CrossRef  Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    CrossRef  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arxiv: 1412.6980. Retrieved from the arXiv database (2014)

  11. Lee, J.H., Pack, J.H., Lee, I.S.: Fault diagnosis of induction motor using convolutional neural network. Appl. Sci. 9(15) (2019). https://doi.org/10.3390/app9152950

  12. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. Wiley, Hoboken (2019)

    MATH  Google Scholar 

  13. Llanes-Santiago, O., Rivero-Benedico, B., Gálvez-Viera, S., Rodríguez-Morant, E., Torres-Cabeza, R., Silva-Neto, A.: A fault diagnosis proposal with online imputation to incomplete observations in industrial plants. Revista Mexicana de Ingeniería Química 18(1), 83–98 (2019)

    CrossRef  Google Scholar 

  14. Luengo, J., García, S., Herrera, F.: A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests. Expert Syst. Appl. 36(4), 7798–7808 (2009). https://doi.org/10.1016/j.eswa.2008.11.041

    CrossRef  Google Scholar 

  15. Medina, R., et al.: A LSTM neural network approach using vibration signals for classifying faults in a Gearbox. Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019, pp. 208–214 (2019). https://doi.org/10.1109/SDPC.2019.00045

  16. Patan, K.: Artificial Neural Networks for the Modelling and fault Diagnosis Of Technical Processes. Lecture Notes in Control and Information Sciences, Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79872-9

    CrossRef  Google Scholar 

  17. Prieto-Moreno, A., Llanes-Santiago, O., García-Moreno, E.: Principal components selection for dimensionality reduction using discriminant information applied to fault diagnosis. J. Process Control 33, 14–24 (2015). https://doi.org/10.1016/j.jprocont.2015.06.003

    CrossRef  Google Scholar 

  18. Rodríguez Ramos, A., et al.: An approach to multiple fault diagnosis using fuzzy logic. J. Intell. Manuf. 30(1), 429–439 (2016). https://doi.org/10.1007/s10845-016-1256-4

    MathSciNet  CrossRef  Google Scholar 

  19. Rodríguez Ramos, A., Bernal de Lázaro, J.M., Prieto-Moreno, A., da Silva Neto, A.J., Llanes-Santiago, O.: An approach to robust fault diagnosis in mechanical systems using computational intelligence. J. Intell. Manuf. 30(4), 1601–1615 (2017). https://doi.org/10.1007/s10845-017-1343-1

    CrossRef  Google Scholar 

  20. Saufi, S.R., Ahmad, Z.A.B., Leong, M.S., Lim, M.H.: Gearbox fault diagnosis using a deep learning model with limited data sample. IEEE Trans. Industr. Inf. 16(10), 6263–6271 (2020). https://doi.org/10.1109/TII.2020.2967822

    CrossRef  Google Scholar 

  21. Ustundag, A., Cevikcan, E.: Industry 4.0: Managing the Digital Transformation. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57870-5

    CrossRef  Google Scholar 

  22. Watanabe, K., Matsuura, I., Abe, M., Kubota, M., Himmelblau, D.M.: Incipient fault diagnosis of chemical processes via artificial neural networks. AIChE J. 35(11), 1803–1812 (1989). https://doi.org/10.1002/aic.690351106

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Ortiz Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ortiz Ortiz, F.J., Rodríguez-Ramos, A., Llanes-Santiago, O. (2022). A Robust Fault Diagnosis Method in Presence of Noise and Missing Information for Industrial Plants. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07750-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07749-4

  • Online ISBN: 978-3-031-07750-0

  • eBook Packages: Computer ScienceComputer Science (R0)