Skip to main content

Clustering of Twitter Networks Based on Users’ Structural Profile

  • 152 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13264)


Twitter’s ability to connect users around a given topic provides an insight into the complex mechanisms that grant positions of influence to a subset of users. This work focuses on clustering a collection of Twitter topic networks through an interpretable approach centered on the asymmetric relations on the platform. We create a network representation based on directed graphlet-orbits, using graphlets with 2–4 nodes. Our method has two main steps; first, we identify structural profiles for the network users. Then, we create network embeddings using the previous profiles and establish groups within the collection. We show the applicability of the proposed method by analyzing 50 real networks generated around trending topics in Mexico and discussing the identified user profiles from the viewpoint of the social power dynamics they reflect.


  • Clustering
  • Graphlets
  • Twitter
  • Social roles

This work was supported by the Universidad Nacional Autónoma de México through the project DGAPA-PAPIIT IA106620 Ciencia de datos para las humanidades digitales.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-07750-0_2
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-07750-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. Ahmed, N.K., Neville, J., Rossi, R.A., Duffield, N.G., Willke, T.L.: Graphlet decomposition: framework, algorithms, and applications. Knowl. Inf. Syst. 50(3), 689–722 (2017).

    CrossRef  Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. Technical report, Stanford (2006)

    Google Scholar 

  3. Charbey, R., Prieur, C.: Stars, holes, or paths across your Facebook friends: a graphlet-based characterization of many networks. Netw. Sci. 7(4), 476–497 (2019)

    CrossRef  Google Scholar 

  4. Gabielkov, M., Rao, A., Legout, A.: Studying social networks at scale: macroscopic anatomy of the twitter social graph. In: The 2014 ACM International Conference on Measurement and Modeling of Computer Systems - SIGMETRICS 2014, pp. 277–288. ACM Press, Austin (2014)

    Google Scholar 

  5. Gilpin, D.R.: Working the Twittersphere: microblogging as professional identity construction. In: A networked self, pp. 240–258. Routledge (2010)

    Google Scholar 

  6. Himelboim, I., Smith, M.A., Rainie, L., Shneiderman, B., Espina, C.: Classifying twitter topic-networks using social network analysis. Soc. Media+ Soc. 3(1), 2056305117691545 (2017)

    Google Scholar 

  7. Lusher, D., Robins, G.: Formation of social network structure. Exponential random graph models for social networks pp. 16–28 (2013)

    Google Scholar 

  8. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)

    CrossRef  Google Scholar 

  9. Rahimy, E., Sandhu, N.K., Giao, D.M., Pollom, E.L.: #trendingnow: Instagram versus twitter activity among radiation oncology patients and providers. Practical Radiation Oncology (2021)

    Google Scholar 

  10. Sarajlić, A., Malod-Dognin, N., Yaveroğlu, Ö.N., Pržulj, N.: Graphlet-based characterization of directed networks. Sci. Rep. 6(1), 1–14 (2016)

    CrossRef  Google Scholar 

  11. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1177–1178 (2010)

    Google Scholar 

  12. Yuan, C., Yang, H.: Research on k-value selection method of k-means clustering algorithm. J-Mult. Sci. J. 2(2), 226–235 (2019)

    Google Scholar 

  13. Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., Tian, Q.: Discovering discriminative graphlets for aerial image categories recognition. IEEE Trans. Image Process. 22(12), 5071–5084 (2013)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marisol Flores-Garrido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Flores-Garrido, M., García-Velázquez, L.M., Cortez-Madrigal, R.S. (2022). Clustering of Twitter Networks Based on Users’ Structural Profile. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07749-4

  • Online ISBN: 978-3-031-07750-0

  • eBook Packages: Computer ScienceComputer Science (R0)