Skip to main content

Motor Imagery Classification Using Riemannian Geometry in Multiple Frequency Bands with a Weighted Nearest Neighbors Approach

  • 139 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13264)

Abstract

Brain-Computer Interface (BCI) provides a direct communication from a brain to a computer through the analysis of brain evoked responses. The detection of motor imagery (MI) is one of the main paradigm used in BCI. We investigate the classification of MI using Riemannian geometry, a density based approach for discriminating brain evoked responses in multiple frequency bands. We compare classifiers based on the minimum distance to the mean (MDM) and k-nearest neighbors (KNN) approaches, with decisions weighted in relation to the kappa value of each frequency band. For the multi-class classification, the best performance was achieved with the weighted KNN with an average kappa value of 51.9%.

Keywords

  • Motor imagery
  • Riemannian geometry
  • Classification
  • K-nearest neighbor
  • Brain-machine interface

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-07750-0_15
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-07750-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Riemannian geometry applied to BCI classification. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 629–636. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15995-4_78

  2. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer interface classification by riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2011)

    CrossRef  Google Scholar 

  3. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI competition 2008-GRAZ data set a. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), vol. 16, pp. 1–6. Graz University of Technology (2008)

    Google Scholar 

  4. Chatterjee, R., Sanyal, D.K.: Study of different filter bank approaches in motor-imagery EEG. Smart Healthcare Analyt. IoT Enabled Environ. 178, 173 (2020)

    CrossRef  Google Scholar 

  5. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA -2004. LNCS, vol. 3117, pp. 87–98. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27816-0_8

  6. Gaur, P., Pachori, R.B., Wang, H., Prasad, G.: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and riemannian geometry. Expert Syst. Appl. 95, 201–211 (2018)

    CrossRef  Google Scholar 

  7. Ilyas, M.Z., Saad, P., Ahmad, M.I.: A survey of analysis and classification of EEG signals for brain-computer interfaces. In: 2015 2nd International Conference on Biomedical Engineering (ICoBE), pp. 1–6. IEEE (2015)

    Google Scholar 

  8. Isa, N.E.M., Amir, A., Ilyas, M.Z., Razalli, M.S.: The performance analysis of k-nearest neighbors (k-nn) algorithm for motor imagery classification based on EEG signal. In: MATEC web of conferences. vol. 140, p. 01024. EDP Sciences (2017)

    Google Scholar 

  9. Ju, C., Guan, C.: Tensor-cspnet: A novel geometric deep learning framework for motor imagery classification. arXiv preprint arXiv:2202.02472 (2022)

  10. Khasnobish, A., Bhattacharyya, S., Konar, A., Tibarewala, D.: K-nearest neighbor classification of left-right limb movement using EEG data. In: Oral Presentation in International Conference on Biomedical Engineering and Assistive Technologies. NIT Jalandhar (2010)

    Google Scholar 

  11. Lebedev, M.A., Nicolelis, M.A.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)

    CrossRef  Google Scholar 

  12. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)

    MathSciNet  CrossRef  Google Scholar 

  13. Mulder, T.: Motor imagery and action observation: cognitive tools for rehabilitation. J. Neural Transm. 114(10), 1265–1278 (2007)

    CrossRef  Google Scholar 

  14. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. sensors 12(2), 1211–1279 (2012)

    Google Scholar 

  15. Pfurtscheller, G., Brunner, C., Schlögl, A., Da Silva, F.L.: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1), 153–159 (2006)

    CrossRef  Google Scholar 

  16. Xie, X., Zou, X., Yu, T., Tang, R., Hou, Y., Qi, F.: Multiple graph fusion based on riemannian geometry for motor imagery classification. Appl. Intell. pp. 1–13 (2022)

    Google Scholar 

Download references

Acknowledgment

This study was supported by the NIH-R15 NS118581 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Cecotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Tiwale, G., Cecotti, H. (2022). Motor Imagery Classification Using Riemannian Geometry in Multiple Frequency Bands with a Weighted Nearest Neighbors Approach. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07750-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07749-4

  • Online ISBN: 978-3-031-07750-0

  • eBook Packages: Computer ScienceComputer Science (R0)