Skip to main content

Indoor Air Pollution Forecasting Using Deep Neural Networks

  • 94 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13264)

Abstract

Atmospheric pollution components have negative effects in the health and life of people. Outdoor pollution has been extensively studied, but a large portion of people stay indoors. Our research focuses on indoor pollution forecasting using deep learning techniques coupled with the large processing capabilities of the cloud computing. This paper also shares the implementation using an open source approach of the code for modeling time-series of different sources data. We believe that further research can leverage the outcomes of our research.

Keywords

  • Air quality index forecast
  • Deep learning
  • Public data

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-07750-0_12
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-07750-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Abdullah, A., Raja, S., Thulasyammal, R., Mohsen, M., Ibrahim, A.: An optimized artificial neural network model using genetic algorithm for prediction of traffic emission concentrations. Int. J. Adv. Comput. Sci. Appl. 12 (2021). https://doi.org/10.14569/IJACSA.2021.0120693

  2. Cakir, S., Moro, S.: Evaluating the performance of ANN in predicting the concentrations of ambient air pollutants in Nicosia. Atmos. Pollut. Res. 11(12), 2327–2334 (2020). https://doi.org/10.1016/j.apr.2020.06.011

    CrossRef  Google Scholar 

  3. Ghazali, S., Lokman, H.: Air quality prediction using artificial neural network. Universiti Tun Hussein Onn Malaysia. In: The International Conference on Civil and Environmental Engineering Sustainability (2012)

    Google Scholar 

  4. Patni, J., Sharma, H.: Air quality prediction using artificial neural networks. In: International Conference on Automation, Computational and Technology Management (2019). https://doi.org/10.1109/icactm.2019.8776774

  5. Saad, S., Andrew, A., Shakaff, A., Saad, A., Yuzof, A., Zakaria, A.: Classifying sources influencing indoor air quality (IAQ) using artificial neural network (ANN). Sensors 15(5), 11665–11684 (2015)

    CrossRef  Google Scholar 

  6. Bekkar, A., Hssina, B., Douzi, S., Douzi, K.: Air-pollution prediction in smart city, deep learning approach. J. Big Data 8(1), 1–21 (2021). https://doi.org/10.1186/s40537-021-00548-1

    CrossRef  Google Scholar 

  7. Sotomayor-Olmedo, A., et al.: Forecast urban air pollution in Mexico City by using support vector machines: a kernel performance approach. Int. J. Intell. Science 3(3), 126–135 (2013)

    CrossRef  Google Scholar 

  8. Ramos-Ibarra, E., Silva, E.: Trend estimation and forecasting of atmospheric pollutants in the Mexico City Metropolitan Area through a non-parametric perspective. Atmósfera 33(4), 401–420 (2020). https://doi.org/10.20937/ATM.52757

  9. Bing, G., Ordieres-Meré, J., Cabrera, C.: Prediction models for ozone in metropolitan area of Mexico City based on artificial intelligence techniques. Int. J. Inf. Decis. Sci. 7(2), 115–139 (2015)

    Google Scholar 

  10. Singh, S.K., Yang, R., Behjat, A., Rai, R., Chowdhury, S., Matei, I.: PI-LSTM: physics-infused long short-term memory network. In: 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 2019, pp. 34–41 (2019)

    Google Scholar 

  11. Kim, Y., Knowles, S., Manley, J., Radoias, V.: Long-run health consequences of air pollution: evidence from Indonesia’s forest fires of 1997. Econ. Hum. Biol. 26, 186–198 (2017). https://doi.org/10.1016/j.ehb.2017.03.006

  12. NORMA Oficial Mexicana NOM-156-SEMARNAT-2012, Establecimiento y operación de sistemas de monitoreo de la calidad del aire. §10.4.2, pp. 8, 14 (2012)

    Google Scholar 

  13. Timeseries forecasting for weather prediction. https://keras.io/examples/timeseries/timeseries_weather_forecasting/

  14. Tensorflow: Tutorial on Time series forecasting Time series forecasting. https://www.tensorflow.org/tutorials/structured_data/time_series

  15. Bosch BME680 Datasheet. https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme680-ds001.pdf

  16. Mancuso, D.: Indoor Air Quality Monitor — Hackster.io. https://www.hackster.io/damancuso/indoor-air-quality-monitor-b181e9. Accessed 3 Oct 2021

  17. Dirección de Monitoreo Atmosférico de la Secretaría del Medio Ambiente del Gobierno de la Ciudad de México. http://www.aire.cdmx.gob.mx/

  18. OpenWeatherMap: History weather bulk for Camarones (19.48,-99.18) from January 01, 1979 to September 27, 2021

    Google Scholar 

  19. Sistema Nacional de Información de la Calidad del Aire del Gobierno Federal México https://sinaica.inecc.gob.mx/. Accessed 3 Oct 2021

  20. Google AI Blog: Doing Data Science with coLaboratory. https://ai.googleblog.com/2014/08/doing-data-science-with-colaboratory.html

  21. Google Cloud launches Vertex AI, unified platform for MLOps — Google Cloud Blog. https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-launches-vertex-ai-unified-platform-for-mlops

  22. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://arxiv.org/abs/1603.04467

Download references

Acknowledgements

We thank the Asociación Mexicana de Cultura A.C., for its support. We also thank Montserrat Altamirano-Astorga for her valuable help proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Altamirano-Astorga , Ita-Andehui Santiago-Castillejos , Luz Hernández-Martínez or Edgar Roman-Rangel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Altamirano-Astorga, J., Santiago-Castillejos, IA., Hernández-Martínez, L., Roman-Rangel, E. (2022). Indoor Air Pollution Forecasting Using Deep Neural Networks. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07750-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07749-4

  • Online ISBN: 978-3-031-07750-0

  • eBook Packages: Computer ScienceComputer Science (R0)