Skip to main content

Artificial Neural Network-Based Methodology for Optimization of Low-Cost Green UHPFRC Under Ductility Requirements

  • Conference paper
  • First Online:
Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS 2022)

Abstract

Several constructions in earthquake-prone areas in developing countries do not meet current seismic codes, mainly because of the rampant informal construction. These circumstances require effective seismic retrofitting interventions through solutions of an acceptable cost that allow the most extensive application possible. This research focuses on developing a low-cost, low-carbon-footprint material with the required ductility parameters for seismic retrofitting applications. First, a plain UHPC is optimized under compressive strength, cost, and carbon footprint criteria. After that, the second stage of this study determines the binary combination of fibers, among those available in the Colombian market, that permit reaching the necessary ductility parameters for the desired application at a lower cost. The ductility parameters considered are the energy capacity absorption (g) and the strain capacity at maximum tensile strength (εpc) measured in the direct tensile test. Various statistical and computational tools such as Artificial Neural Networks, Design of Experiments, and Multi-Objective Optimization were utilized to lesser the experimental campaign. The mathematically optimized dosage was experimentally evaluated. Finally, the optimal fiber volume fraction for the necessary UHPFRC ductility parameters for seismic strengthening applications (g ≥ 50 kJ/m3 and εpc ≥ 0.3%) was selected at only 1.7%. This optimal fiber combination was composed of 0.34% of smooth high-strength steel (lf/df = 65) fibers, and 1.36% of normal strength hooked end steel fibers (lf/df = 80). It is relevant to highlight that this optimized UHPFRC outperforms the ductility parameters obtained by other authors with successful applications in the seismic strengthening field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Domenico, D., Impollonia, N., Ricciardi, G.: Seismic retrofitting of confined masonry-RC buildings: The case study of the university hall of residence in Messina, Italy. Ing. Sismica 36, 54–85 (2019)

    Google Scholar 

  2. Dogan, E., Krstulovic-Opara, N.: Seismic retrofit with continuous slurry-infiltrated mat concrete jackets. ACI Struct. J. 100, 713–722 (2003)

    Google Scholar 

  3. Abellán, J., Fernández, J., Torres, N., Núñez, A.: Development of cost-efficient UHPC with local materials in Colombia. In: Middendorf, B., Fehling, E., Wetzel, A. (eds.) Proceedings of Hipermat 2020 - 5th International Symposium on UHPC and Nanotechnology for Construction Materials. University of Kassel, Kassel, Germany, pp. 97–98 (2020)

    Google Scholar 

  4. Garcia, L.E.: Desarrollo de la normativa sismo resistente colombiana en los 30 años desde su primera expedición. Rev. Ing. 41, 71–77 (2014)

    Article  Google Scholar 

  5. Sísmica A de I: Reglamento Colombiano de construcciónsismo resistente. NSR-10 (2010)

    Google Scholar 

  6. Abellán, J., Fernández, J., Torres, N., Núñez, A.: Statistical optimization of ultra-high-performance glass concrete. ACI Mater. J. 117, 243–254 (2020). https://doi.org/10.14359/51720292

  7. Abellán-García, J., Núñez-López, A., Torres-Castellanos, N., Fernández-Gómez, J.: Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass. Dyna 86, 84–92 (2019). https://doi.org/10.15446/dyna.v86n211.79596

  8. Abellán, J., Torres, N., Núñez, A., Fernández, J.: Ultra high preformance fiber reinforced concrete: state of the art, applications and possibilities into the latin american market. In: XXXVIII Jornadas Sudamericanas de Ingeniería Estructural. Lima, Peru (2018)

    Google Scholar 

  9. ACI Committe 239R, ACI Committe 239: ACI – 239 Committee in Ultra-High Performance Concrete. ACI, Toronto (2018)

    Google Scholar 

  10. Kwon, S., Nishiwaki, T., Kikuta, T., Mihashi, H.: development of ultra-high-performance hybrid fiber- reinforced cement-based composites development of ultra-high-performance hybrid fiber- reinforced cement-based composites (2014). https://doi.org/10.14359/51686890

  11. Massicotte, B., Dagenais, M.-A., Lagier, F.: Performance of UHPFRC jackets for the seismic strengthening of bridge piers. In: RILEM-fib-AFGC International Symposium Ultra-High Perform Fibre-Reinforced, pp. 89–98 (2013)

    Google Scholar 

  12. Soranakom, C., Mobasher, B.: Correlation of tensile and flexural responses of strain softening and strain hardening cement composites. Cem. Concr. Compos. 465–477 (2008).https://doi.org/10.1016/j.cemconcomp.2008.01.007

  13. Wille, K., El-tawil, S., Naaman, A.E.: Properties of strain hardening ultra high performance fiber reinforced concrete ( UHP-FRC ) under direct tensile loading. Cem. Concr. Compos. 48, 53–66 (2014). https://doi.org/10.1016/j.cemconcomp.2013.12.015

    Article  Google Scholar 

  14. Wille, K., Kim, D.J.D., Naaman, A.E.: Strain hardening UHP-FRC with low fiber contents. Mater. Struct. 44, 538–598 (2011). https://doi.org/10.1617/s11527-010-9650-4

    Article  Google Scholar 

  15. Pyo, S., El-Tawil, S., Naaman, A.E.: Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates. Cem. Concr. Res. 88, 144–156 (2016). https://doi.org/10.1016/j.cemconres.2016.07.003

    Article  Google Scholar 

  16. Martin-Sanz, H., Chatzi, E., Brühwiler, E.: The use of ultra high performance fibre reinforced cement-based composites in rehabilitation projects: a review. In: Saouma, V., Bolander, J., Landis, E. (eds.) 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures (2016)

    Google Scholar 

  17. Naaman, A.E., Reinhart, H.W.: Proposed classification of HPFRC composites based on their tensile response. Mater. Struct. 39, 547–555 (2006). https://doi.org/10.1617/s11527-006-9103-2

  18. Yoo, D.Y., Kim, M.J.: High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers. Constr. Build. Mater. 209, 354–363 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.096

  19. Dagenais, M.A., Massicotte, B., Boucher-Proulx, G.: Seismic retrofitting of rectangular bridge piers with deficient lap splices using ultrahigh-performance fiber-reinforced concrete. J. Bridg. Eng. 23, 1–13 (2018). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001173

    Article  Google Scholar 

  20. Tayeh, B.A., Abu Bakar, B.H., Megat Johari, M.A., Voo, Y.L.: Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation - a review. Proc. Eng. 54, 525–538 (2013). https://doi.org/10.1016/j.proeng.2013.03.048

    Article  Google Scholar 

  21. Khan, M.I., Al-Osta, M.A., Ahmad, S., Rahman, M.K.: Seismic behavior of beam-column joints strengthened with ultra-high performance fiber reinforced concrete. Compos. Struct. 200, 103–119 (2018). https://doi.org/10.1016/j.compstruct.2018.05.080

    Article  Google Scholar 

  22. Abellán-García, J., Guzmán-Guzmán, J.S.: Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications. Constr. Build. Mater. 285 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122869

  23. Abellán-García, J.: Dosage optimization and seismic retrofitting applications of ultra-highperformance fiber reinforced concrete (UHPFRC). Polytechnic University of Madrid (2020)

    Google Scholar 

  24. Abellán-García, J., Fernández-Gómez, J., Torres-Castellanos, N.: Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks. Eur. J. Environ. Civ. Eng. 1–25 (2020).https://doi.org/10.1080/19648189.2020.1762749

  25. Abellán-García, J.: Four-layer perceptron approach for strength prediction of UHPC. Constr. Build. Mater 256 (2020).https://doi.org/10.1016/j.conbuildmat.2020.119465

  26. Khashman, A., Akpinar, P.: ScienceDirect non-destructive prediction of concrete compressive strength using neural networks prediction of concrete compressive strength using neural networks. Proc. Comput. Sci. 108, 2358–2362 (2017). https://doi.org/10.1016/j.procs.2017.05.039

    Article  Google Scholar 

  27. Abellán-García, J.: Artificial neural network model for strength prediction of ultra-high-performance concrete. ACI Mater. J. 118, 3–14 (2021). https://doi.org/10.14359/51732710

  28. Abellán-Garcia, J., Sánchez-Díaz, J., Ospina-Becerra, V.: Neural network-based optimization of fibers for seismic retrofitting applications of UHPFRC. Eur. J. Environ. Civ. Eng. (2021). https://doi.org/10.1080/19648189.2021.1938687

    Article  Google Scholar 

  29. Derringer, G., Suich, R.: Simultaneous optimization of several response variables. J. Qual. Technol. 21, 214–219 (1980)

    Article  Google Scholar 

  30. Ghafari, E., Costa, H., Nuno, E., Santos, B.: RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers. Constr. Build. Mater. 66, 375–383 (2014). https://doi.org/10.1016/j.conbuildmat.2014.05.064

    Article  Google Scholar 

  31. Upasani, R.S., Banga, A.K.: Response surface methodology to investigate the iontophoretic delivery of tacrine hydrochloride. Pharm. Res. 21, 2293–2299 (2004)

    Article  Google Scholar 

  32. Abellán-García, J.: K -fold validation neural network approach for predicting the one-day compressive strength of UHPC. Adv. Civ. Eng. Mater. 10, 223–243 (2021). https://doi.org/10.1520/ACEM20200055

  33. Abellán-García, J., Núñez-López, A., Torres-Castellanos, N., Fernández-Gómez, J.: Factorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder. Dyna 87, 42–51 (2020). https://doi.org/10.15446/dyna.v87n213.82655

  34. ASTM: Standard test method for compressive strength of hydraulic cement mortars (Using 2-in . or [50-mm] Cube Specimens). Am. Soc. Test. Mater. C-109/109M 1–9 (2010)

    Google Scholar 

  35. Yokota, H., Rokugo, K., Sakata, N.: (JSCE-2008) Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC) (2008). https://doi.org/10.1016/j.dci.2010.01.003

  36. Alsalman, A., Dang, C.N., Micah Hale, W.: Development of ultra-high performance concrete with locally available materials. Constr Build Mater 133, 135–145 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.040

    Article  Google Scholar 

  37. Abellán-García, J., Torres-Castellanos, N., Fernández-Gómez, J.A., Núñez-López, A.M.: Ultra-high-performance concrete with local high unburned carbon fly ash. Dyna 88, 38–47 (2021). https://doi.org/10.15446/dyna.v88n216.89234

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Abellán-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abellán-García, J. (2023). Artificial Neural Network-Based Methodology for Optimization of Low-Cost Green UHPFRC Under Ductility Requirements. In: Rossi, P., Tailhan, JL. (eds) Numerical Modeling Strategies for Sustainable Concrete Structures. SSCS 2022. RILEM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-031-07746-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07746-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07745-6

  • Online ISBN: 978-3-031-07746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics