Assaf Almog, A., Garlaschelli, D.: Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models. New J. Phys. 16(9), 093015 (2014)
CrossRef
Google Scholar
Christoffersen, P., Diebold, F.: Financial asset returns, direction-of-change forecasting, and volatility dynamics. Manage. Sci. 52(8), 1273–1287 (2006)
CrossRef
Google Scholar
Bosq, D., Nguyen, H.T.: A Course in Stochastic Processes. Stochastic Models and Statistical Inference. Kluwer, Dordrecht (1996)
Google Scholar
Pliska, S.R.: Introduction to Mathematical Finance: Discrete Time Models. Blackwell, Maldon, Mass (1997)
Google Scholar
Mozo, A., Ordozgoiti, B., Gómez-Canaval, S.: Forecasting short-term data center network traffic load with convolutional neural networks. PLoS ONE 13(2), e0191939 (2018). https://doi.org/10.1371/journal.pone.0191939
CrossRef
Google Scholar
Lysyak, A.S., Ryabko, B.Y.: Time series prediction based on data compression methods. Probl. Inf. Transm. 52(1), 92–99 (2016). https://doi.org/10.1134/S0032946016010075
MathSciNet
CrossRef
MATH
Google Scholar
Hodgea, V., Krishnanb, R., Austina, J., Polakb, J., Jackson, T.: Short-Term Prediction of Traffic Flow Using a Binary Neural Network. Neural Comput. Appl. 25(7–8), 1639–1655 (2014)
CrossRef
Google Scholar
Chen, A., Law, J., Aibin, M.: A survey on traffic prediction techniques using artificial intelligence for communication networks. Telecom 2, 518–535 (2021). https://doi.org/10.3390/telecom2040029
CrossRef
Google Scholar
Shimall, T.: Traffic Analysis for Network Security: Two Approaches for Going Beyond Network Flow Data, 16 September 2016. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.513.7546&rep=rep1&type=pdf
Volovich, K.I., Denisov, S.A., Shabanov, A.P., Malkovsky, S.I.: Aspects of the assessment of the quality of loading hybrid high-performance computing cluster. In: 5th International Conference on Information Technologies and High-Performance Computing, ITHPC 2019. CEUR Workshop Proceedings, 16–19 September 2019, vol. 2426, pp. 7–11 (2019)
Google Scholar
Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983). https://doi.org/10.1007/978-1-4612-5449-2
CrossRef
MATH
Google Scholar
Sornette, D., Andersen, J.V.: Increments of uncorrelated time series can be predicted with a universal 75% probability of success. Int. J. Mod. Phys. 11(4), 713–720 (2000)
CrossRef
Google Scholar
Andersen, T.G., Bollerslev, T., Christoffersen, P.F., Diebold, F.X.: Volatility and correlation forecasting. In: Elliot, G., Granger, C.W.J., Timmermann, A. (eds.), Handbook of Economic Forecasting, pp. 778–878. North-Holland, Amsterdam (2006)
Google Scholar
Lavasani, A., Eghlidos, T.: Bit test for evaluating pseudorandom sequences. Comput. Sci. Eng. Electr. Eng. 16(1), 19–33 (2009)
MATH
Google Scholar
Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Wiley, New York (2008)
CrossRef
Google Scholar
Rabiner, L.R., Rader, C.M.: Digital Signal Processing. IEEE Press Selected Reprint Series, 1 December 1994
Google Scholar
Feder, M., Merhav, N., Gutman, M.: Universal prediction of individual sequences. IEEE Trans. Inf. Theor. 38(4), 887–892 (1992)
MathSciNet
CrossRef
Google Scholar
Campbell, J.Y., Lo, A.W., MacKinlay, A.C.: The Econometrics of Financial Markets. Princeton University Press (1997)
Google Scholar
Hasanov, V., Bayramov, H., Mehdiyev, H.: Prediction of network traffic based on neural-fuzzy analysis of changes in the volume of IP-packets. In: 9th International Conference on Theory and Application of Soft Computing, Computing with Words and Perception, ICSCCW 2017, pp. 438–445 (2017)
Google Scholar