Skip to main content

Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling

  • 201 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13301)

Abstract

Template attacks are one of the most powerful classes of side-channel attacks. Template attacks begin with an offline step, in which the side-channel traces are profiled, and decoders are created for each side-channel leak. In this paper, we analyze the compression step of the trace profiling process. This compression step, which is a central part of the decoder’s training process, is used to reduce the amount of time, memory consumption, and data required to successfully perform the attack; various practical methods have been proposed for this step, including one which uses an efficient means both for selecting the points of interest (POI) in the power trace and for preprocessing noisy data.

We investigate ways to improve the efficiency of the attack by implementing several compression methods which select the most informative power consumption samples from power traces. We develop a unique dedicated evaluation system to compare the performance of various decoders with different compression methods on real-world power traces. Our findings indicate that our proposed decoder for side-channel traces outperforms the current state of art in terms of speed, resource consumption, and accuracy. We also demonstrate our decoder’s effectiveness under resource-constrained conditions, and show that it achieves over 70% accuracy even if there are fewer than 1,000 traces in the profiling phase.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-07689-3_3
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-07689-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. MATLAB PCA. https://www.mathworks.com/help/stats/pca.html

  2. MATLAB predict. https://in.mathworks.com/help/ident/ref/predict.html

  3. Bohy, L., Neve, M., Samyde, D., Quisquater, J.J.: Principal and independent component analysis for crypto-systems with hardware unmasked units (2003)

    Google Scholar 

  4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    CrossRef  Google Scholar 

  5. Cagli, E.: Feature extraction for side-channel attacks. Ph.D. thesis, Sorbonne University, France (2018)

    Google Scholar 

  6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    CrossRef  Google Scholar 

  7. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17

    CrossRef  Google Scholar 

  8. Division, C.S.: Announcing the Advanced Encryption Standard (AES). Information Technology Laboratory, Gaithersburg, MD (2001)

    Google Scholar 

  9. Elaabid, M.A., Guilley, S.: Practical improvements of profiled side-channel attacks on a hardware crypto-accelerator. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 243–260. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9_15

    CrossRef  Google Scholar 

  10. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_2

    CrossRef  Google Scholar 

  11. Hogenboom, J.: Principal component analysis and side-channel attacks (2010)

    Google Scholar 

  12. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Signal Processing Series, 1st edn. (1998)

    Google Scholar 

  13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    CrossRef  Google Scholar 

  14. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5_29

    CrossRef  Google Scholar 

  15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, Cham (2007). https://doi.org/10.1007/978-0-387-38162-6. ISBN 978-0-387-30857-9

  16. MathWork: MATLAB fitcnb. https://in.mathworks.com/help/stats/fitcnb.html

  17. Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_9

    CrossRef  Google Scholar 

  18. Oren, Y., Weisse, O., Wool, A.: Practical template-algebraic side channel attacks with extremely low data complexity. In: HASP@ISCA, p. 7. ACM (2013)

    Google Scholar 

  19. Oswald, D., Paar, C.: Improving side-channel analysis with optimal linear transforms. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 219–233. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37288-9_15

    CrossRef  Google Scholar 

  20. ParisTec: DPA contest v4 2013. http://www.dpacontest.org/v4/rsm_traces.php

  21. ParisTec: Description of the masked AES - DPA contest v4 (2013). http://www.dpacontest.org/v4/data/rsm/aes-rsm.pdf

  22. Picek, S., Heuser, A., Guilley, S.: Template attack versus Bayes classifier. J. Cryptogr. Eng. 7(4), 343–351 (2017). https://doi.org/10.1007/s13389-017-0172-7

    CrossRef  Google Scholar 

  23. Picek, S., Heuser, A., Jovic, A., Batina, L.: A systematic evaluation of profiling through focused feature selection. IEEE Trans. Very Large Scale Integr. Syst. 27(12), 2802–2815 (2019)

    Google Scholar 

  24. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6_35

    CrossRef  Google Scholar 

  25. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_8

    CrossRef  Google Scholar 

  26. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting time samples for multivariate DPA attacks. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 155–174. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_10

    CrossRef  Google Scholar 

  27. Stallings, W.: Cryptography and Network Security, 6th edn. (2014)

    Google Scholar 

  28. Sugawara, T., Homma, N., Aoki, T., Satoh, A.: Profiling attack using multivariate regression analysis. IEICE Electron. Express 7(15), 1139–1144 (2010)

    CrossRef  Google Scholar 

  29. Weiss, O.: Github - new methods for side channel cryptanalysis code base github (2016). https://github.com/oweisse/dpav4-contest/commits/master

  30. Weisse, O.: New methods for side channel cryptanalysis (2013)

    Google Scholar 

  31. Zheng, Y., Zhou, Y., Yu, Z., Hu, C., Zhang, H.: How to compare selections of points of interest for side-channel distinguishers in practice? In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 200–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21966-0_15

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hen Hayoon or Yossi Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hayoon, H., Oren, Y. (2022). Time, Memory and Accuracy Tradeoffs in Side-Channel Trace Profiling. In: Dolev, S., Katz, J., Meisels, A. (eds) Cyber Security, Cryptology, and Machine Learning. CSCML 2022. Lecture Notes in Computer Science, vol 13301. Springer, Cham. https://doi.org/10.1007/978-3-031-07689-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07689-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07688-6

  • Online ISBN: 978-3-031-07689-3

  • eBook Packages: Computer ScienceComputer Science (R0)