Skip to main content

Transfer Learning for Time Series Classification Using Synthetic Data Generation

  • 260 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13301)


In this paper, we propose an innovative Transfer learning for Time series classification method. Instead of using an existing dataset from the UCR archive as the source dataset, we generated a 15,000,000 synthetic univariate time series dataset that was created using our unique synthetic time series generator algorithm which can generate data with diverse patterns and angles and different sequence lengths. Furthermore, instead of using classification tasks provided by the UCR archive as the source task as previous studies did, we used our own 55 regression tasks as the source tasks, which produced better results than selecting classification tasks from the UCR archive.


  • Transfer learning
  • Time series classification
  • Synthetic data

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-07689-3_18
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-07689-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1.

    Code availble at:


  1. Tan, C.W., Dempster, A., Bergmeir, C., Webb, G.I.: MultiRocket: effective summary statistics for convolutional outputs in time series classification arXiv preprint arXiv:2102.00457 (2021)

  2. De Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134, 19–67 (2005)

    MathSciNet  CrossRef  Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  5. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding arXiv preprint arXiv:1810.04805 (2018)

  6. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Transfer learning for time series classification. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 1367–1376. IEEE (2018)

    Google Scholar 

  7. Müller, M.: Dynamic time warping. In: Bundy, A., Wallen, L. (eds.) Information Retrieval for Music and Motion, pp. 69–84. Springer, Heidelberg (2007).

  8. Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F.V., Avila, S., Valle, E.: Knowledge transfer for melanoma screening with deep learning. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 297–300. IEEE (2017)

    Google Scholar 

  9. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. arXiv preprint arXiv:2106.04560 (2021)

  10. Ismail Fawaz, H., et al.: InceptionTime: finding alexnet for time series classification, ArXix (2019)

    Google Scholar 

  11. Ferreira, L.N., Zhao, L.: Time series clustering via community detection in networks. Inf. Sci. 326, 227–242 (2016)

    MathSciNet  CrossRef  Google Scholar 

  12. Sagheer, A., Kotb, M.: Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 323, 203–213 (2019)

    CrossRef  Google Scholar 

  13. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019).

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Yang, Q., Wu, X.: 10 challenging problems in data mining research. Int. J. Inf. Technol. Decis. Mak. 5(04), 597–604 (2006)

    CrossRef  Google Scholar 

  16. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: Proceedings 2001 IEEE International Conference on Data Mining, pp. 289–296. IEEE (2001)

    Google Scholar 

  17. Papadimitriou, S., Yu, P.: Optimal multi-scale patterns in time series streams. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 647–658 (2006)

    Google Scholar 

  18. Zhu, Y., Shasha, D.: Statstream: statistical monitoring of thousands of data streams in real time. In: VLDB 2002: Proceedings of the 28th International Conference on Very Large Databases, pp. 358–369. Elsevier (2002)

    Google Scholar 

  19. Wang, L., Wang, Z., Liu, S.: An effective multivariate time series classification approach using echo state network and adaptive differential evolution algorithm. Expert Syst. Appl. 43, 237–249 (2016)

    CrossRef  Google Scholar 

  20. Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNs for time series classification. Neural Netw. 116, 237–245 (2019)

    CrossRef  Google Scholar 

  21. Zhao, W.: Research on the deep learning of the small sample data based on transfer learning. In: AIP Conference Proceedings, vol. 1864, no. 1, p. 020018. AIP Publishing LLC (2017)

    Google Scholar 

  22. Zhuang, F., et al.: A comprehensive survey on transfer learning arXiv preprint arXiv:1911.02685 (2019)

  23. Wang, J., Wang, W., Wei, S., Zeng, Y., Luo, F.: Time series sequences classification with inception and LSTM module. In: 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, pp. 51–55 (2019)

    Google Scholar 

  24. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12 (2004)

    MathSciNet  CrossRef  Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)

  26. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  27. Ismail Fawaz, H., et al.: InceptionTime: finding AlexNet for time series classification. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020).

    MathSciNet  CrossRef  Google Scholar 

  28. Tang, W., Long, G., Liu, L., Zhou, T., Jiang, J., Blumenstein, M.: Rethinking 1d-CNN for time series classification: a stronger baseline arXiv preprint arXiv:2002.10061 (2020)

  29. Dau, H.A., et al.: The UCR time series archive. IEEE/CAA J. Automatica Sinica 6, 1293–1305 (2019)

    CrossRef  Google Scholar 

  30. Kashiparekh, K., Narwariya, J., Malhotra, P., Vig, L., Shroff, G.: ConvTimeNet: a pre-trained deep convolutional neural network for time series classification. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nathaniel Shimoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rotem, Y., Shimoni, N., Rokach, L., Shapira, B. (2022). Transfer Learning for Time Series Classification Using Synthetic Data Generation. In: Dolev, S., Katz, J., Meisels, A. (eds) Cyber Security, Cryptology, and Machine Learning. CSCML 2022. Lecture Notes in Computer Science, vol 13301. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07688-6

  • Online ISBN: 978-3-031-07689-3

  • eBook Packages: Computer ScienceComputer Science (R0)