Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that distributions are close. In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12–14 November 2000, Redondo Beach, California, USA, pp. 259–269 (2000)
Google Scholar
Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing closeness of discrete distributions. J. ACM 60(1), 4:1–4:25 (2013)
Google Scholar
Chan, S., Diakonikolas, I., Valiant, P., Valiant, G.: Optimal algorithms for testing closeness of discrete distributions. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp. 1193–1203 (2014)
Google Scholar
Diakonikolas, I., Gouleakis, T., Peebles, J., Price, E.: Collision-based testers are optimal for uniformity and closeness. Chic. J. Theor. Comput. Sci. 2019, 1–21 (2019). http://cjtcs.cs.uchicago.edu/articles/2019/1/contents.html
Dolev, S., Gilboa, N., Li, X.: Accumulating automata and cascaded equations automata for communicationless information theoretically secure multi-party computation. Theor. Comput. Sci. 795, 81–99 (2019)
MathSciNet
CrossRef
Google Scholar
Fredricksen, H., Maiorana, J.: Necklaces of beads in \(k\) colors and \(k\)-ary de Bruijn sequences. Discret. Math. 23(3), 207–210 (1978)
MathSciNet
CrossRef
Google Scholar
Goldreich, O.: Introduction to Property Testing. Cambridge University Press, Cambridge (2017)
Google Scholar
Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)
MathSciNet
CrossRef
Google Scholar
Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, pp. 68–75 (2011)
Google Scholar
jmviz: random-debruijn (2020). https://github.com/jmviz/random-debruijn/blob/master/debruijn.py
Kendall, M.G., Smith, B.B.: Randomness and random sampling numbers. J. R. Stat. Soc. 101(1), 147–166 (1938). http://www.jstor.org/stable/2980655
Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, vol. 2, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1997)
Google Scholar
Kumar, M.: Randomness test of sequences (2022). https://github.com/manishkk/Randomness-Test-of-Sequences
Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. STS, Springer, New York (2005). https://doi.org/10.1007/0-387-27605-X
CrossRef
MATH
Google Scholar
Neyman, J., Pearson, E.S.: On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. London Ser. A 231, 289–337 (1933). http://www.jstor.org/stable/91247
Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)
MathSciNet
CrossRef
Google Scholar
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-Allen and Hamilton Inc. McLean VA (2001)
Google Scholar
Sawada, J., Williams, A., Wong, D.: A surprisingly simple de Bruijn sequence construction. Discret. Math. 339(1), 127–131 (2016)
MathSciNet
CrossRef
Google Scholar
Siu, M., Tong, P.: Generation of some de Bruijn sequences. Discret. Math. 31(1), 97–100 (1980)
MathSciNet
CrossRef
Google Scholar
Soto, J., Bassham, L.: Randomness testing of the advanced encryption standard finalist candidates, 1 April 2000
Google Scholar
Sýs, M., Říha, Z.: Faster randomness testing with the NIST statistical test suite. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 272–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12060-7_18
CrossRef
Google Scholar
Turan, M.S., Barker, E., Kelsey, J., McKay, K.A., Baish, M.L., Boyle, M., et al.: Recommendation for the entropy sources used for random bit generation. NIST Special Publication 800(90B), 102 (2018)
Google Scholar