Skip to main content

Antibiotics That Inhibit Protein Synthesis

  • Chapter
  • First Online:
Chemistry of Antibiotics and Related Drugs

Abstract

Antibiotics that inhibit protein synthesis are discussed. Background biochemistry information on translation is provided. Antibiotics presented include puromycin, aminoglycosides, tetracyclines, chloramphenicol, macrolides, lincosamides, streptogramins, oxazolidinones, pleuromutilins, mupirocins, and peptide deformylase inhibitors. Mechanisms of action of the antibiotics and resistance development against them are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920

    Article  CAS  PubMed  Google Scholar 

  2. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  CAS  PubMed  Google Scholar 

  3. Yonath A (2005) Antibiotics targeting ribosomes: resistance, selectivity, synergism, and cellular regulation. Annu Rev Biochem 74:649–679. https://doi.org/10.1146/annurev.biochem.74.082803.133130

    Article  CAS  PubMed  Google Scholar 

  4. Chopra S, Reader J (2015) tRNAs as antibiotic targets. Int J Mol Sci 16:321–349

    Article  CAS  Google Scholar 

  5. Davis BD, Chen L, Tai PC (1986) Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci U S A 83:6164–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watve M, Tickoo R, Jog M, Bhole B (2001) How many antibiotics are produced by the genus streptomyces? Arch Microbiol 176:386–390

    Article  CAS  PubMed  Google Scholar 

  7. Singh RK, Tiwari SP, Rai AK, Mohapatra TM (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64:401–412

    Article  CAS  Google Scholar 

  8. Kotra LP, Haddad J, Mobashery S (2000) Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 44:3249–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Rando RR (1995) Specific binding of aminoglycoside antibiotics to RNA. Chem Biol 2:281–290

    Article  CAS  PubMed  Google Scholar 

  10. Hong W, Zeng J, Xie J (2014) Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B 4:258–265

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alksne LE, Anthonyt RA, Liebmant SW, Warner JR (1993) An accuracy center in the ribosome conserved over 2 billion years. Proc Natl Acad Sci U S A 90:9538–9541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Springer B, Kidan YG, Prammananan T, Ellrott K, Bottger EC, Sander P (2001) Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother 45:2877–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hollingshead S, Vapnek D (1985) Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenyltransferase. Plasmid 13:17–30

    Article  CAS  PubMed  Google Scholar 

  15. Sandvang D (1999) Novel streptomycin and spectinomycin resistance gene as a gene cassette within a class 1 integron isolated from Escherichia coli. Antimicrob Agents Chemother 43:3036–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alangaden GJ, Kreiswirth BN, Aouad A, Khetarpal M, Igno FR, Moghazeh SL, Manavathu EK, Lerner SA (1998) Mechanism of resistance to amikacin and kanamycin in Mycobacterium Tuberculosis. Antimicrob Agents Chemother 42:1295–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rusu A, Buta EL (2021) The development of third-generation tetracycline antibiotics and new perspectives. Pharmaceutics 13:2085. https://doi.org/10.3390/pharmaceutics13122085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Speer BS, Shoemaker NB, Salyers AA (1992) Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev 5:387–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Olson MW, Ruzin A, Feyfant E, Rush TS III, O’Connell J, Bradford PA (2006) Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Antimicrob Agents Chemother 50:2156–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McMurry L, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A 77:3974–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burdett V (1991) Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. J Biol Chem 266:2872–2877

    Article  CAS  PubMed  Google Scholar 

  22. Burdett V (1996) Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J Bacteriol 178:3246–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Connell SR, Tracz DM, Nierhaus KH, Taylor DE (2003) Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47:3675–3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Speer BS, Salyers AA (1989) Novel aerobic tetracycline resistance gene that chemically modifies tetracycline. J Bacteriol 171:148–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD (2004) TetX is a flavindependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 279:52346–52352

    Article  CAS  PubMed  Google Scholar 

  26. Fernández M, Conde S, de la Torre J, Molina-Santiago C, Ramos JL, Duque E (2012) Mechanisms of resistance to chloramphenicol in Pseudomonas putida KT2440. Antimicrob Agents Chemother 56:1001–1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Murray IA, Shaw WV (1997) O-acetyltransferases for chloramphenicol and other natural products. Antimicrob Agents Chemother 41:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542

    Article  CAS  PubMed  Google Scholar 

  29. Doucet PF, Capobianco JO, Jarlier V, Goldman RC (1998) Molecular basis of clarithromycin activity against Mycobacterium avium and Mycobacterium smegmatis. J Antimicrob Chemother 41:179–187

    Article  Google Scholar 

  30. Lai PC, Walters JD (2013) Azithromycin kills invasive Aggregatibacter actinomycetemcomitans in gingival epithelial cells. Antimicrob Agents Chemother 57:1347–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tenson T, Lovmar M, Ehrenberg M (2003) The mechanism of a of macrolides, Lincosamides and Streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 330:1005–1014

    Article  CAS  PubMed  Google Scholar 

  32. Brisson-Noel A, Trieu-Cuot P, Courvalin P (1988) Mechanism of action of spiramycin and other macrolides. J Antimicrob Chemother 22(Suppl B):13–23

    Article  CAS  PubMed  Google Scholar 

  33. Arthur M, Brisson-Noel A, Courvalin P (1987) Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses. J Antimicrob Chemother 20:783–802

    Article  CAS  PubMed  Google Scholar 

  34. Scheinfeld N (2004) Telithromycin: a brief review of a new ketolide antibiotic. J Drugs Dermatol 3:409–413

    PubMed  Google Scholar 

  35. Ackermann G, Rodloff AC (2003) Drugs of the 21st century: telithromycin (HMR 3647)—the first Ketolide. J Antimicrob Chemother 51:497–511

    Article  CAS  PubMed  Google Scholar 

  36. Kostopoulou ON, Petropoulos AD, Dinos GP, Choli-Papadopoulou T, Kalpaxis DL (2012) Investigating the entire course of telithromycin binding to Escherichia coli ribosomes. Nucleic Acids Res 40:5078–5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mast Y, Wohlleben W (2014) Streptogramins—two are better than one! Int J Med Microbiol 304:44–50

    Article  CAS  PubMed  Google Scholar 

  38. Korczynska M, Mukhtar TA, Wright GD, Berghuis AM (2007) Structural basis for streptogramin B resistance in Staphylococcus aureus by virginiamycin B lyase. Proc Natl Acad Sci U S A 104:10388–10393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Slee AM, Wuonola MA, McRipley RJ, Zajac I, Zawada MJ, Bartholomew PT, Gregory WA, Forbes M (1987) Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721. Antimicrob Agents Chemother 31:1791–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Livermore DM, Mushtaq S, Warner M, Woodford N (2009) Activity of oxazolidinone TR-700 against linezolid-susceptible and -resistant staphylococci and enterococci. J Antimicrob Chemother 63:713–715

    Article  CAS  PubMed  Google Scholar 

  41. Naesens R, Ronsyn M, Druwé P, Denis O, Ieven M, Jeurissen A (2009) Central nervous system invasion by community-acquired methicillin-resistant Staphylococcus aureus: case report and review of the literature. J Med Microbiol 58:1247–1251

    Article  PubMed  Google Scholar 

  42. Shinabarger DL, Marotti KR, Murray RW, Lin AH, Melchior EP, Swaney SM, Dunyak DS, Demyan WF, Buysse JM (1997) Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob Agents Chemother 41:2132–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schumacher A, Trittler R, Bohnert JA, Kummerer K, Pages J-M, Kern WV (2007) Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother 59:1261–1264

    Article  CAS  PubMed  Google Scholar 

  44. Besier S, Ludwig A, Zander J, Brade V, Wichelhaus TA (2008) Linezolid resistance in Staphylococcus aureus: gene dosage effect, stability, fitness costs, and cross-resistances. Antimicrob Agents Chemother 52:1570–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Watkins RR, File TM (2020) Lefamulin: a novel semisynthetic pleuromutilin antibiotic for community-acquired bacterial pneumonia. Clin Infect Dis 71:2757–2762. https://doi.org/10.1093/cid/ciaa336

    Article  CAS  PubMed  Google Scholar 

  46. Novak R (2011) Are pleuromutilin antibiotics finally fit for human use? Ann N Y Acad Sci 1241:71–81I

    Article  CAS  PubMed  Google Scholar 

  47. Bulkley D, Johnson F, Steitz TA (2012) The antibiotic thermorubin inhibits protein synthesis by binding to inter-subunit bridge B2a of the ribosome. J Mol Biol 416:571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernandes P, Pereira D (2011) Efforts to support the development of fusidic acid in the United States. Clin Infect Dis 52(suppl 7):S542–S546

    Article  PubMed  Google Scholar 

  49. Martemyanov KA, Liljas A, Yarunin AS, Gudkov AT (2001) Mutations in the G-domain of elongation factor G from Thermus thermophilus affect both its interaction with GTP and fusidic acid. J Biol Chem 276:28774–28778

    Article  CAS  PubMed  Google Scholar 

  50. Besier S, Ludwig A, Brade V, Wichelhaus TA (2003) Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol 47:463–469

    Article  CAS  PubMed  Google Scholar 

  51. Parenti MA, Hatfield SM, Leyden JJ (1987) Mupirocin: a topical antibiotic with a unique structure and mechanism of action. Clin Pharm 6:761–770

    CAS  PubMed  Google Scholar 

  52. Nicholas RO, Berry V, Hunter PA, Kelly JA (1999) The antifungal activity of mupirocin. J Antimicrob Chemother 43:579–582

    Article  CAS  PubMed  Google Scholar 

  53. Yanagisawa T, Lee JT, Wu HC, Kawakami M (1994) Relationship of protein structure of isoleucyl-tRNA synthetase with pseudomonic acid resistance of Escherichia coli. A proposed mode of action of pseudomonic acid as an inhibitor of isoleucyl-tRNA synthetase. J Biol Chem 269:24304–24309

    Article  CAS  PubMed  Google Scholar 

  54. Piatkov KI, Vu TTM, Hwang CS, Varshavsky A (2015) Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. Microbial Cell 2:10

    Article  CAS  Google Scholar 

  55. Apfel CM, Locher H, Evers S, Takacs B, Hubschwerlen C, Pirson W, Page MGP, Keck W (2001) Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob Agents Chemother 45:1058–1064. https://doi.org/10.1128/AAC.45.4.1058-1064.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilbart J, Perry CR, Slocombe B (1993) High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob Agents Chemother 37:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen DZ, Patel DV, Hackbarth CJ, Wang W, Dreyer G, Young DC, Margolis PS, Wu C, Ni ZJ, Trias J, White RJ, Yuan ZY (2000) Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39:1256–1262

    Article  CAS  PubMed  Google Scholar 

  58. Thorarensen A, Douglas MR Jr, Rohrer DC, Vosters AF, Yem AW, Marshall VD, Lynn JC, Bohanon MJ, Tomich PK, Zurenko GE, Sweeney MT, Jensen RM, Nielsen JW, Seest EP, Dolak LA (2001) Identification of novel potent hydroxamic acid inhibitors of peptidyl deformylase and the importance of the hydroxamic acid functionality on inhibition. Bioorg Med Chem Lett 11:1355–1358

    Article  CAS  PubMed  Google Scholar 

  59. Clements JM, Beckett RP, Brown A, Catlin G, Lobell M, Palan S, Thomas W, Whittaker M, Wood S, Salama S, Baker PJ, Rodgers HF, Barynin V, Rice DW, Hunter MG (2001) Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Antimicrob Agents Chemother 45:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kanudia P, Mittal M, Kumaran S, Chakraborti PK (2011) Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensable for its activity. BMC Biochem 12:35. https://doi.org/10.1186/1471-2091-12-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang WL, Chai SC, Huang M, He HZ, Hurley TD, Ye QZ (2008) Discovery of inhibitors of Escherichia coli methionine aminopeptidase with the Fe(II)-form selectivity and antibacterial activity. J Med Chem 51:6110–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Yeh JR, Mara A, Ju R, Hines JF, Cirone P, Griesbach HL, Schneider I, Slusarski DC, Holley SA, Crews CM (2006) A chemical and genetic approach to the mode of action of fumagillin. Chem Biol 13:1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Joharapurkar AA, Dhanesha NA, Jain MR (2014) Inhibition of the methionine aminopeptidase 2 enzyme for the treatment of obesity. Diabetes Metab Syndr Obes 7:73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharjee, M.K. (2022). Antibiotics That Inhibit Protein Synthesis. In: Chemistry of Antibiotics and Related Drugs. Springer, Cham. https://doi.org/10.1007/978-3-031-07582-7_6

Download citation

Publish with us

Policies and ethics