Skip to main content

Antibiotics That Inhibit Cell Wall Synthesis

  • Chapter
  • First Online:
Chemistry of Antibiotics and Related Drugs
  • 570 Accesses

Abstract

Structure of the bacterial cell wall, the metabolic pathway for the biosynthesis of the cell wall, and various antibiotics affecting the different stages of cell wall synthesis are presented. Mechanisms of action of the antibiotics and the mechanisms of resistance development to the antibiotics are discussed. The antibiotics include fosfomycin, cycloserine, β-lactams, carbapenems, bacitracin, moenomycin, mersacidin, vancomycin, and teixobactin. β-lactamase and β-lactamase inhibitors are discussed in the context of antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheffers D-J, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69:585–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Heijenoort J (2001) Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11:25R–35R

    Article  PubMed  Google Scholar 

  3. White D (2007) The physiology and biochemistry of prokaryotes, 3rd edn. Oxford University Press, New York, NY

    Google Scholar 

  4. Mengin-Lecrelux D, van Heijenoort J (1993) Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol 175:6150–6157

    Article  Google Scholar 

  5. Du W, Brown JR, Sylvester DR, Huang J, Chalker AF, So CY, Holmes DJ, Payne DJ, Wallis NG (2000) Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in grampositive bacteria. J Bacteriol 182:4146–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown ED, Vivas EI, Walsh CT, Kolter R (1995) MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J Bacteriol 177:4194–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eschenburg S, Kabsch W, Healy ML, Schonbrunn E (2003) A new view of the mechanisms of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate3-PHOSPHATE synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J Biol Chem 278:49215–49222

    Article  CAS  PubMed  Google Scholar 

  8. Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K, Walsh CT (1996) Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDPGlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic Fosfomycin. Biochemistry 35:4923–4928

    Article  CAS  PubMed  Google Scholar 

  9. Fillgrove KL, Pakhomova S, Newcomer ME, Armstrong RN (2003) Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc 125:15730–15731

    Article  CAS  PubMed  Google Scholar 

  10. Reitz RH, Slade HD, Neuhaus FC (1967) The biochemical mechanisms of resistance by streptococci to the antibiotics D-cycloserine and O-carbamyl-D-serine. Biochemistry 6:2561–2570

    Article  CAS  PubMed  Google Scholar 

  11. Wargel RJ, Shadur CA, Neuhaus FC (1971) Mechanism of D-cycloserine action: transport mutants for D-alanine, D-cycloserine, and glycine. J Bacteriol 105:1028–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spratt BG (1977) Properties of the penicillin-binding proteins of Escherichia coli K12. Eur J Biochem 72:341–352

    Article  CAS  PubMed  Google Scholar 

  13. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258

    Article  CAS  PubMed  Google Scholar 

  14. Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multi-drug resistance via radical-induced mutagenesis. Mol Cell 37:311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bayles KW (2000) The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol 8:274–278

    Article  CAS  PubMed  Google Scholar 

  16. Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33:113–137

    Article  CAS  PubMed  Google Scholar 

  17. Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A 54:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tomasz A, Albino A, Zanati E (1970) Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 227:138–140

    Article  CAS  PubMed  Google Scholar 

  19. Smith TJ, Blackman SA, Foster SJ (2000) Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249–262

    Article  CAS  PubMed  Google Scholar 

  20. Graham LL, Beveridge TJ (1994) Structural differentiation of the Bacillus subtilis 168 cell wall. J Bacteriol 176:1413–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Merad T, Archibald AR, Hancock IC, Harwood CR, Hobot JA (1989) Cell wall assembly in Bacillus subtilis: visualisation of old and new wall material by electron microscopic examination of samples stained selectively for teichoic acid and teichuronic acid. J Gen Microbiol 135:645–655

    CAS  PubMed  Google Scholar 

  22. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816

    Article  CAS  PubMed  Google Scholar 

  23. Percival A, Brumfitt W, De Louvois J (1963) The role of penicillinase in determining natural and acquired resistance of Gram-negative bacteria to penicillins. J Gen Microbiol 32:77–89

    Article  CAS  PubMed  Google Scholar 

  24. Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 46:837–837

    Article  Google Scholar 

  25. Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54:969–976

    Article  CAS  PubMed  Google Scholar 

  26. Liu X-L, Shi Y, Kang JS, Oelschlaeger P, Yang K-W (2015) Amino acid thioester derivatives: a highly promising scaffold for the development of metallo-β-lactamase l1 inhibitors. ACS Med Chem Lett 6:660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bebrone C, Delbruck H, Kupper MB, Schlomer P, Willmann C, Frere J-M, Fischer R, Galleni M, Hoffmann KMV (2009) The structure of the dizinc subclass B2 metallo-β-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Antimicrob Agents Chemother 53:4464–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drawz SM, Bonomo RA (2010) Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23:160–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Toney JH, Fitzgerald PM, Grover-Sharma N, Olson SH, May WJ, Sundelof JG, Vanderwall DE, Cleary KA, Grant SK, Wu JK, Kozarich JW, Pompliano DL, Hammond GG (1998) Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase. Chem Biol 5:185–196

    Article  CAS  PubMed  Google Scholar 

  30. King AM, Reid-Yu SA, Wang W, King DT, De Pascale G, Strynadka NC, Wals TR, Coombes BK, Wright GD (2014) Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510:503–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paradkar A (2013) Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. J Antibiot (Tokyo) 66:411–420

    Article  CAS  Google Scholar 

  32. Jacoby GA (2009) AmpC β-Lactamases. Clin Microbiol Rev 22:161–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lahiri SD, Johnstone MR, Ross PL, McLaughlin RE, Olivier NB, Alma RA (2014) Avibactam and class c β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob Agents Chemother 58:5704–5713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu C, Qin S, Xu L, Zhao D, Liu X, Lang S, Feng X, Liu HM (2015) New Delhi metallo-βlactamase 1(NDM-1), the dominant carbapenemase detected in carbapenem-resistant enterobacter cloacae from Henan province, China. PLoS One. https://doi.org/10.1371/journal.pone.0135044

  35. Payne DJ, Bateson JH, Gasson BC, Proctor D, Khushi T, Farmer TH, Tolson DA, Bell D, Skett PW, Marshall AC, Reid R, Ghosez L, Combret Y, Marchand-Brynaert J (1997) Inhibition of metallo-β-lactamases by a series of mercaptoacetic acid thiol ester derivatives. Antimicrob Agents Chemother 41:135–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meziane-Cherif D, Courvalin P (2014) Antibiotic resistance: to the rescue of old drugs. Nature 510:477–478

    Article  CAS  PubMed  Google Scholar 

  37. Bradford PA (2001) Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanders CC, Sanders WE (1979) Emergence of resistance to cefamandole: possible role of cefoxitin-inducible beta-lactamases. Antimicrob Agents Chemother 15:792–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rolinson GN, Stevens S, Batchelor FR, Wood JC, Chain EB (1960) Bacteriological studies on a new penicillin—BRL.1241. Lancet 276:564–567

    Article  Google Scholar 

  40. Barber M (1961) Methicillin-resistant staphylococci. J Clin Pathol 14:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morell EA, Balkin DM (2010) Methicillin-resistant Staphylococcus aureus: a pervasive pathogen highlights the need for new antimicrobial development. Yale J Biol Med 83:223–233

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fuda C, Suvorov M, Vakulenko SB, Mobashery S (2004) The Basis for resistance to β-lactam antibiotics by Penicillin-binding Protein 2a of methicillin-resistant Staphylococcus aureus. J Biol Chem 279:40802–40806

    Article  CAS  PubMed  Google Scholar 

  43. Stapleton PD, Taylor PW (2002) Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 85:57–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Severin A, Wu SW, Tabei K, Tomasz A (2005) High-level β-lactam resistance and cell wall synthesis catalyzed by the mecA homologue of Staphylococcus sciuri introduced into Staphylococcus aureus. J Bacteriol 187:6651–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller LK, Sanchez PL, Berg SW, Kerbs SB, Harrison WO (1983) Effectiveness of aztreonam, a new monobactam antibiotic, against penicillin-resistant gonococci. J Infect Dis 148:612

    Article  CAS  PubMed  Google Scholar 

  46. Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, Miller TW, Miller AK, Hendlin D, Mochales S, Hernandez S, Woodruff HB, Birnbaum J (1979) Thienamycin, a new β-lactam antibiotic discovery, taxonomy, isolation and physical properties. J Antibiot 32:1–12

    Article  CAS  Google Scholar 

  47. Livermore DM, Woodford (2000) Carbapenemases: a problem in waiting? Curr Opin Microbiol 3:489–495

    Article  CAS  PubMed  Google Scholar 

  48. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother 55:4943–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhanel GG, Wiebe R, Dilay L, Thomson K, Rubenstein E, Hoban DJ, Noreddin AM, Karlowsky JA (2007) Comparative review of the carbapenems. Drugs 67:1027–1052

    Article  CAS  PubMed  Google Scholar 

  50. Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264:388–393

    Article  CAS  PubMed  Google Scholar 

  51. Li H, Luo YF, Williams BJ, Blackwell TS, Xie CM (2012) Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol 302:63–68

    Article  CAS  PubMed  Google Scholar 

  52. Al-Bayssari C, Valentini C, Gomez C, Reynaud-Gaubert M, Rolain J-M (2015) First detection of insertion sequence element ISPa1328 in the oprD porin gene of an imipenem-resistant Pseudomonas aeruginosa isolate from an idiopathic pulmonary fibrosis patient in Marseille, France. New Microbes New Infect 7:26–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Warner DM, Yang Q, Duval V, Chen M, Xu Y, Levy SB (2013) Involvement of MarR and YedS in carbapenem resistance in a clinical isolate of Escherichia coli from China. Antimicrob Agents Chemother 57:1935–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhattacharjee MK (2015) Better visualization and photodocumentation of zone of inhibition by staining cells and background agar differently. J Antibiot 68:657–659

    Article  CAS  Google Scholar 

  56. Schwalbe RS, Ritz WJ, Verma PR, Barranco EA, Gilligan PH (1990) Selection for vancomycin resistance in clinical isolates of Staphylococcus haemolyticus. J Infect Dis 161:45–51

    Article  CAS  PubMed  Google Scholar 

  57. Bhattacharjee MK, Bommareddy PK, DePass AL (2021) A water-soluble antibiotic in rhubarb stalk shows an unusual pattern of multiple zones of inhibition and preferentially kills slow-growing bacteria. Antibiotics 10:951. https://doi.org/10.3390/antibiotics10080951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Johnson BA, Anker H, Meleney FL (1945) Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science 102:376–377

    Article  CAS  PubMed  Google Scholar 

  59. Stone KJ, Strominger JL (1971) Mechanism of action of bacitracin: complexation with metal ion and C55-isoprenyl pyrophosphate. Proc Natl Acad Sci U S A 68:3223–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cao M, Helmann JD (2002) Regulation of the Bacillus subtilis bcrC bacitracin resistance gene by two extracytoplasmic function σ factors. J Bacteriol 184:6123–6129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cain BD, Norton PJ, Eubanks W, Nick HS, Allen CM (1993) Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. J Bacteriol 175:3784–3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. El Ghachi M, Bouhss A, Blanot D, Mengin-Lecreulx D (2004) The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279:30106–30113

    Article  PubMed  CAS  Google Scholar 

  63. Podlesek Z, Comino A, Herzog-Velikonja B, Grabnar M (2000) The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity. FEMS Microbiol Lett 188:103–106

    Article  CAS  PubMed  Google Scholar 

  64. Kurz M, Guba W, Vertesy L (1998) Three-dimensional structure of moenomycin A—a potent inhibitor of penicillin-binding protein 1b. Eur J Biochem 252:500–507

    Article  CAS  PubMed  Google Scholar 

  65. Baizman ER, Branstrom AA, Longley CB, Allanson N, Sofia MJ, Gange D, Goldman RC (2000) Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology 146:3129–3140

    Article  CAS  PubMed  Google Scholar 

  66. Ostash B, Walker S (2010) Moenomycin family antibiotics: chemical synthesis, biosynthesis, biological activity. Nat Prod Rep 27:1594–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng TJR, Sung MT, Liao HY, Chang YF, Chen CW, Huang CY, Chou LY, Wu YD, Chen YH, Cheng YSE, Wong CH, Ma C, Cheng WC (2008) Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics. Proc Natl Acad Sci U S A 105(2):431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shah NJ (2015) Reversing resistance: the next generation antibacterials. Indian J Pharmacol 47:248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Derouaux A, Sauvage E, Terrak M (2013) Peptidoglycan glycosyltransferase substrate mimics as templates for the design of new antibacterial drugs. Front Immunol 4:78–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yuan Y, Fuse S, Ostash B, Sliz P, Kahne D, Walker S (2008) Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design. ACS Chem Biol 3:429–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chatterjee S, Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot 45:832–838

    Article  CAS  Google Scholar 

  72. Chatterjee S, Chatterjee DK, Jani RH, Blumbach J, Ganguli BN, Klesel N, Limbert M, Seibert G (1992) Mersacidin, a new antibiotic from Bacillus, in vitro and in vivo antibacterial activity. J Antibiot 45:839–845

    Article  CAS  Google Scholar 

  73. Hsu S-TD, Breukink E, Bierbaum G, Sahl H-G, de Kruijff B, Kaptein R, van Nuland NAJ, Bonvin AMJJ (2003) NMR study of Mersacidin and Lipid II interaction in Dodecylphosphocholine Micelles: conformational changes are a key to antimicrobial activity. J Biol Chem 278:13110–13117

    Article  CAS  PubMed  Google Scholar 

  74. Brotz H, Bierbaum G, Markus A, Molitor E, Sahl H-G (1995) Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob Agents Chemother 39:714–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Levine DP (2006) Vancomycin: a history. Clin Infect Dis 42:S5–S12

    Article  CAS  PubMed  Google Scholar 

  76. Anderson RCGR, Higgins HM Jr, Pettinga CD (1961) Symposium: how a drug is born. Cinci J Med 42:49–60

    Google Scholar 

  77. Geraci JE, Heilman FR, Nichols DR, Ross GT, Wellman WE (1956) Some laboratory and clinical experiences with a new antibiotic, vancomycin. Mayo Clin Proc 31:564–582

    CAS  Google Scholar 

  78. Geraci JE, Wilson WR (1981) Vancomycin therapy for infective endocarditis. Rev Infect Dis 3(Suppl):S250–S258

    Article  PubMed  Google Scholar 

  79. Cetinkaya Y, Falk P, Mayhall CG (2000) Vancomycin-resistant enterococci. Clin Microbiol Rev 13:686–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Janganan TK, Zhang L, Bavro VN, Matak-Vinkovic D, Barrera NP, Burton MF, Steel PG, Robinson CV, Borges-Walmsley MI, Walmsley AR (2011) Opening of the outer membrane protein channel in tripartite efflux pumps is induced by interaction with the membrane fusion partner. J Biol Chem 286:5484–5493

    Article  CAS  PubMed  Google Scholar 

  81. Svetitsky S, Leibovici L, Paul M (2009) Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother 53:4069–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smith DK (2005) A supramolecular approach to medicinal chemistry: medicine beyond the molecule. J Chem Educ 82:393–400

    Article  CAS  Google Scholar 

  83. Rao J, Whitesides GM (1997) Tight binding of a dimeric derivative of Vancomycin with Dimeric L-Lys-D-Ala-D-Ala. J Am Chem Soc 119:10286–10290

    Article  CAS  Google Scholar 

  84. Schafer M, Schneider TR, Sheldrick GM (1996) Crystal structure of vancomycin. Structure 4:1509–1515

    Article  CAS  PubMed  Google Scholar 

  85. Uttley AHC, Collins CH, Naidoo J, George RC (1988) Vancomycin-resistant enterococci. Lancet 1:57–58

    Article  CAS  PubMed  Google Scholar 

  86. Leclercq R, Derlot E, Duval J, Courvalin P (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–160

    Article  CAS  PubMed  Google Scholar 

  87. Friden TR, Munsiff SS, Low DE, Willey BM, William G, Faur Y, Eisner W, Warren S, Kreiswirth B (1993) Emergence of vancomycin resistant enterococci in New York City. Lancet 342:76–79

    Article  Google Scholar 

  88. Rasmussen RV, Fowler VG Jr, Skov R, Bruun NE (2011) Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future Microbiol 6:43–56

    Article  CAS  PubMed  Google Scholar 

  89. Nelson RRS (1999) Intrinsically vancomycin-resistant gram-positive organisms: clinical relevance and implications for infection control. J Hosp Infect 42:275–282

    Article  CAS  PubMed  Google Scholar 

  90. Lessard IAD, Healy VL, Park I-S, Walsh CT (1999) Determinants for differential effects on D-Ala-D-Lactate vs D-Ala-D-Ala formation by the VanA ligase from vancomycin-resistant enterococci. Biochemistry 38:14006–14022

    Article  CAS  PubMed  Google Scholar 

  91. Perichon B, Courvalin P (2009) VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:4580–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fraimow HS, Jungkind DL, Lander DW, Delso DR, Dean JL (1994) Urinary tract infection with an Enterococcus faecalis isolate that requires vancomycin for growth. Ann Intern Med 121:22–26

    Article  CAS  PubMed  Google Scholar 

  93. Kirkpatrick BD, Harrington SM, Smith D, Marcellus D, Miller C, Dick J, Karanfil L, Perl TM (1999) An outbreak of vancomycin-dependent Enterococcus faecium in a bone marrow transplant unit. Clin Infect Dis 29:1268–1273

    Article  CAS  PubMed  Google Scholar 

  94. Majumdar A, Lipkin GW, Eliott TS, Wheeler DC (1999) Vancomycin-dependent enterococci in a uraemic patient with sclerosing peritonitis. Nephrol Dial Transplant 14:765–767

    Article  CAS  PubMed  Google Scholar 

  95. Tambyah PA, Marx JA, Maki DG (2004) Nosocomial infection with Vancomycin-dependent enterococci. Emerg Infect Dis 10:1277–1281

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vanderlinde RJ, Yegian D (1948) Streptomycin-dependent bacteria in the identification of streptomycin producing microorganisms. J Bacteriol 56:357–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. van Bambeke F, Chauvel M, Reynolds PE, Fraimow HS, Courvalin P (1999) Vancomycin dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob Agents Chemother 43:41–47

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Till F, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature. https://doi.org/10.1038/nature14098

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharjee, M.K. (2022). Antibiotics That Inhibit Cell Wall Synthesis. In: Chemistry of Antibiotics and Related Drugs. Springer, Cham. https://doi.org/10.1007/978-3-031-07582-7_3

Download citation

Publish with us

Policies and ethics