Skip to main content

A Holistic and Sustainable View on the Product Creation Process for Mechatronic Systems

  • Chapter
  • First Online:
EcoMechatronics
  • 316 Accesses

Abstract

Nowadays sustainability is an important factor in the design and production of mechatronic systems, especially the environmental aspects which will be mainly defined in the development phase and influence the whole later life cycle. This chapter gives an overview of the main approaches like life cycle assessment (LCA) or related key performance indicators (KPIs) and considers their relevance to mechatronic design. Therefore, some methods for the early design phases are presented based on the well-known approaches V-model and design structure matrix. The summary will be reflected with two significant use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klöpffer W, Grahl B (2014) Life cycle assessment (LCA): a guide to best practice. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527655625

    Book  Google Scholar 

  2. Ehrlenspiel K, Kiewert A, Lindemann U (2007) Cost-efficient design. Springer, Berlin Heidelberg

    Book  Google Scholar 

  3. Su D (ed) (2020) Sustainable product: development tools, methods and examples. Springer Nature Switzerland AG

    Google Scholar 

  4. Buchert T, Pförtner A, Stark R (2017) Target-driven sustainable product development. In: Stark R, Seliger G, Bonvoisin J (eds.) Sustainable manufacturing, sustainable production, life cycle engineering and management. Springer International Publishing, Cham, pp 129–146. https://doi.org/10.1007/978-3-319-48514-0_9

  5. Morelli J (2011) Environmental sustainability: a definition for environmental professionals. J Environ Sustain 1(1):1–10. https://doi.org/10.14448/jes.01.0002

  6. Merschak S, Hehenberger P (2019) Ecodesign methods for mechatronic systems: a literature review and classification. 20th international conference on research and education in mechatronics (REM), May 23–24, 2019, Wels, Austria

    Google Scholar 

  7. Hauschild MZ, Rosenbaum RK, Olsen SI (2018) Life cycle assessment theory and practice. Springer

    Book  Google Scholar 

  8. ISO 14040 (2006) Environmental management—life cycle assessment—principles and framework. British Standards Institution, London

    Google Scholar 

  9. Pandey D, Agrawal M, Pandey JS (2011) Carbon footprint: current methods of estimation. Environ Monit Assess 178:135–160. https://doi.org/10.1007/s10661-010-1678-y

    Article  Google Scholar 

  10. Wiedmann T, Minx J (2007) A definition of ‘Carbon Footprint’. Pertsova CC ecological economics research trends: Chapter 1, pp 1–11, Nova Science Publishers, Hauppauge NY, USA, June 2007

    Google Scholar 

  11. VDI 2206 (2004) Design handbook 2206. Entwicklungsmethodik für mechatronische systeme/design methodology for mechatronic systems. VDI Publishing Group, Düsseldorf

    Google Scholar 

  12. Hehenberger P, Bradley D (2016) Mechatronic futures—challenges and solutions for future mechatronic systems and designers. Springer International Publishing

    Google Scholar 

  13. Hehenberger P, Bradley D, Dehghani A, Traxler P (2020) Mechatronic and cyber-physical systems within the domain of the internet of things. In: Stjepandić J, Wognum N, Verhagen W JC (eds) Systems engineering in research and industrial practice. ISBN 978-3-030-33311-9, Springer, London, Berlin, Heidelberg

    Google Scholar 

  14. Hehenberger P, Vogel-Heuser B, Bradley D, Eynard B, Tomiyama T, Achiche S (2016) Design, modelling, simulation and integration of cyber physical systems: methods and applications. Comput Indus 82:273–289. Elsevier.https://doi.org/10.1016/j.compind.2016.05.006

  15. Bertoni A, Bertoni M, Panarotto M, Johansson C, Larsson TC (2016) Value-driven product service systems development: methods and industrial applications. CIRP J Manuf Sci Technol 15:42–55. https://doi.org/10.1016/j.cirpj.2016.04.008

    Article  Google Scholar 

  16. Doualle B, Medini K, Boucher X, Brissaud D, Laforest V (2016) Design of sustainable product-service systems (PSS): towards an incremental stepwise assessment method. Procedia CIRP 48:152–157. https://doi.org/10.1016/j.procir.2016.04.074

    Article  Google Scholar 

  17. Terzi S, Bouras A, Dutta D, Garetti M, Kiritsis D (2010) Product lifecycle management: from its history to its new role. IJPLM 4:360. https://doi.org/10.1504/IJPLM.2010.036489

    Article  Google Scholar 

  18. Chiu M-C, Chu C-H (2012) Review of sustainable product design from life cycle perspectives. Int J Precis Eng Manuf 13:1259–1272. https://doi.org/10.1007/s12541-012-0169-1

    Article  Google Scholar 

  19. Menghi R, Papetti A, Germani M, Marconi M (2019) Energy efficiency of manufacturing systems: a review of energy assessment methods and tools. J Cleaner Prod, 240

    Google Scholar 

  20. Chouinard U, Pigosso DCA, McAloone TC, Baron L, Achiche S (2019) Potential of circular economy implementation in the mechatronics industry: an exploratory research. J Cleaner Prod, 239.https://doi.org/10.1016/j.jclepro.2019.118014

  21. Bender D, Gericke K (ed) (2020) Pahl/Beitz Konstruktionslehre, Methoden und Anwendung erfolgreicher Produktentwicklung. Springer, Berlin, Heidelberg

    Google Scholar 

  22. Krause D, Gebhardt N (2018) Methodische Entwicklung modularer Produktfamilien, Hohe Produktvielfalt beherrschbar entwickeln. Springer, Berlin, Heidelberg

    Google Scholar 

  23. Vajna S, Weber C, Zeman K, Hehenberger P, Gerhard D, Wartzack S (2018) CAx für Ingenieure—Eine praxisbezogene Einführung. Springer Vieweg, Berlin

    Book  Google Scholar 

  24. Buzuku S, Kraslawski A (2017) Use of design structure matrix for analysis of critical barriers in implementing eco-design initiatives in the pulp and paper industry. Procedia Manuf 11:742–750. https://doi.org/10.1016/j.promfg.2017.07.175

    Article  Google Scholar 

  25. Schmidt DM, Schenkl SA, Mörtl M (2014) Matrix-based decision-making for compatible systems in product planning concerning technologies for the reduction of CO2-emissions. In: Marle F, Jankovic M, Maurer M, Schmidt DM, Lindemann U (eds) Risk and change management in complex systems. Carl Hanser Verlag GmbH & Co. KG, München, pp 107–116. https://doi.org/10.3139/9781569904923.011

  26. Eppinger SD, Browning TR (2012) Design structure matrix methods and applications. MIT Press, Cambridge, UK

    Book  Google Scholar 

  27. VDI 5207 (2020) Energy-flexible factory—fundamentals. Düsseldorf: VDI Publishing Group

    Google Scholar 

  28. Graßl M (2015) Bewertung der Energieflexibilität in der Produktion. PhD-Thesis TUM München: Utz

    Google Scholar 

Download references

Acknowledgements

The presented considerations and results were conducted within the research projects of the research group “SMART MECHATRONICS ENGINEERING” at University of Applied Sciences Upper Austria.

The author thanks all partners for valuable discussions within the H2020-project “EnerMan Energy-efficient manufacturing system Management” (grant agreement No 958478) and the Project “XLCA CO2 Life Cycle Analysis in early stage design phase” as part of the COMET-Project “Research Center for Low Carbon Special Powertrain”, which is funded by the Federal Ministry for Transport, Innovation and Technology (BMVIT), the Federal Ministry for Digital and Economic Affairs (BMDW) and the Provinces of Upper Austria and Styria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hehenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hehenberger, P. (2022). A Holistic and Sustainable View on the Product Creation Process for Mechatronic Systems. In: Hehenberger, P., Habib, M., Bradley, D. (eds) EcoMechatronics. Springer, Cham. https://doi.org/10.1007/978-3-031-07555-1_5

Download citation

Publish with us

Policies and ethics