Skip to main content

Micro/Nanopositioning Systems with Piezoelectric Actuators and Their Role in Sustainability and Ecosystems

  • Chapter
  • First Online:
EcoMechatronics

Abstract

Micro/nanopositioners based on piezoelectric actuators and their role to preserve the biodiversity of the ecosystem and achieve a sustainable manufacturing sector are presented in this chapter. These positioners are precise at micro/nanometre resolution and have improved and assisted reproduction and somatic cell nuclear transfer, playing an increasingly important role in preserving endangered species from extinction. Studies suggest these technologies are potentially key factors in our ability to decelerate the degradation of our nature. Further, piezo-actuated micro/nanopositioners are the foundation of add-on accuracy increasing systems, which can return outdated machine tools to service, with minor changes and at a performance level higher than new machines. This avoids waste of energy and materials, as the outdated machines or their major parts would otherwise be deposed of. In addition, piezo-actuated micropositioners play an essential role in vibration-assisted machining, which reduces energy consumption, increases product quality and extends machine lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang H, Zeng Z, Gao J, Zhang X (2015) A flexible parallel nanopositioner for large-stroke micro/nano machining. In: International conference on manipulation, manufacturing and measurement on the nanoscale (3M-NANO), pp 107–110

    Google Scholar 

  2. Li X, Cheah C (2015) Robotic cell manipulation using optical tweezers with unknown trapping stiffness and limited FOV. IEEE/ASME Trans Mechatron 20(4):1624–1632

    Article  Google Scholar 

  3. Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Measur Control 131061101

    Google Scholar 

  4. Saedi S, Mirbagheri A, Jafari A, Farahmand F (2014) A local hybrid actuator for robotic surgery instruments. Int J Biomech Biomed Robot 3(2):100–105

    Google Scholar 

  5. Ghodsi M, Saleem A, Özer A, Bahadur I, Alam K, Al-Yahmadi A et al (2016) Elimination of thermal instability in precise positioning of Galfenol actuators. Behav Mech Multifunct Mater Compos 9800980008

    Google Scholar 

  6. Protopopov V (ed) (2014) Beam alignment and positioning techniques in practical opto-electronics. Springer, pp 309–334

    Google Scholar 

  7. Mohammadzaheri M, AlQallaf A (2017) Nanopositioning systems with piezoelectric actuators, current state and future perspective. Sci Adv Mater 9(7):1071–1080

    Article  Google Scholar 

  8. Bazghaleh M, Grainger S, Mohammadzaheri M, Cazzolato B, Lu T-F (2013) A novel digital charge-based displacement estimator for sensorless control of a grounded-load piezoelectric tube actuator. Sens Actuat A: Phys 198:91–98, 15 August 2013

    Google Scholar 

  9. Roshandel N, Soleymanzadeh D, Ghafarirad H, Koupaei AS (2021) A modified sensorless position estimation approach for piezoelectric bending actuators, Mech Syst Sig Process 149107231

    Google Scholar 

  10. Lovejoy TE, Hannah L, Wilson EO (2019) Biodiversity and climate change: transforming the biosphere. Yale University Press

    Book  Google Scholar 

  11. Supple MA, Shapiro B (2018) Conservation of biodiversity in the genomics era. Genome Biol 19(1):1–12

    Article  Google Scholar 

  12. Presicce G (2020) Reproductive technologies in animals. Academic Press

    Google Scholar 

  13. Sansinena M (ed) (2020) Assisted reproductive biotechnologies in the horse in reproductive technologies in animals. Elsevier, pp 13–30

    Google Scholar 

  14. Yoshida N, Perry AC (2007) Piezo-actuated mouse intracytoplasmic sperm injection (ICSI). Nat Protoc 2(2):296–304

    Article  Google Scholar 

  15. Salamone DF, Canel NG, Rodríguez MB (2017) Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 154(6):F111–F124

    Article  Google Scholar 

  16. Zander-Fox D, Lam K, Pacella-Ince L, Tully C, Hamilton H, Hiraoka K et al (2021) PIEZO-ICSI increases fertilization rates compared with standard ICSI-A prospective cohort study, Reproductive BioMedicine Online

    Google Scholar 

  17. Iqbal A, Ping J, Ali S, Zhen G, Kang JZ, Yi PZ et al (2021) Conservation of endangered species through somatic cell nuclear transfer (SCNT). Conserv Genet Resourc 1–9

    Google Scholar 

  18. Czernik M, Anzalone DA, Palazzese L, Oikawa M, Loi P (2019) Somatic cell nuclear transfer: failures, successes and the challenges ahead. Int J Devel Biol 63(3–4–5):123–130

    Google Scholar 

  19. Singh B, Mal G, Verma V, Tiwari R, Khan MI, Mohapatra RK et al (2021) Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 12(1):1–16

    Article  Google Scholar 

  20. Zhou Q, Yang S, Ding C, He X, Xie Y, Hildebrandt T et al (2006) A comparative approach to somatic cell nuclear transfer in the rhesus monkey. Hum Reprod 21(10):2564–2571

    Article  Google Scholar 

  21. Boiani M. Somatic cell nuclear transfer (SCNT) into mouse oocytes using Eppendorf PiezoXpert®

    Google Scholar 

  22. Moon J, Jung M, Roh S (2017) Comparison of developmental efficiency of murine somatic cell nuclear transfer protocol. J Embryo Transf 32(3):81–86

    Google Scholar 

  23. Uhlmann E, Peukert B, Thom S, Prasol L, Fürstmann P, Sammler F et al (2017) Solut Sustain Mach 139(5)

    Google Scholar 

  24. Kianinejad K, Thom S, Kushwaha S, Uhlmann EJPC (2016) Add-on error compensation unit as sustainable solution for outdated milling machines, 40174–178

    Google Scholar 

  25. Kianinejad K, Uhlmann E, Peukert B (2015) Investigation into energy efficiency of outdated cutting machine tools and identification of improvement potentials to promote sustainability. Procedia CIRP 26533–26538

    Google Scholar 

  26. Uhlmann E, Kianinejad K (2013) Investigation of the upgrading potentials of out-of-date cutting machine tools to promote sustainable and global value creation. In: Proceeding of the 11th global conference on sustainable manufacturing, pp 574–579

    Google Scholar 

  27. Singh H, Joshi R (2016) Piezoelectric transducer based devices for development of a sustainable machining system—a review

    Google Scholar 

  28. Joshi RS, Singh H (2011) Piezoelectric transducer based devices for development of a sustainable machining system—a review. In: 2011 international symposium on applications of ferroelectrics (ISAF/PFM) and 2011 international symposium on piezoresponse force microscopy and nanoscale phenomena in polar materials, pp 1–4

    Google Scholar 

  29. Zheng L, Chen W, Huo D (2020) Review of vibration devices for vibration-assisted machining. Int J Adv Manuf Technol 1081631–108165

    Google Scholar 

  30. Minase J, Lu T-F, Cazzolato B, Grainger S (2010) A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators. Precis Eng 34(4):692–700

    Article  Google Scholar 

  31. Aggrey P, Salimon A, Korsunsky A (2020) Diatomite inspired nanostructured quartz as a piezoelectric material. Limnol Freshw Biol 828–829

    Google Scholar 

  32. Yang X, Li Z, Fei C, Liu Y, Li D, Hou S et al (2020) High frequency needle ultrasonic transducers based on Mn doped piezoelectric single crystal. J Alloys Comp 832154951

    Google Scholar 

  33. Sabek W, Al-mana A, Siddiqui AR, Assadi BE, Mohammad-khorasani M, Mohammadzaheri M, Tafreshi R (2015) Experimental investigation of piezoelectric tube actuators dynamics. In: 2nd international conference on robotics and mechatronics, Madrid, Spain, 20–21 July 2015

    Google Scholar 

  34. Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA J 40(11):2145–2187

    Article  Google Scholar 

  35. Rios S, Fleming A (2014) Control of piezoelectric benders using a charge drive. Proc Actuat. In: 14th international conference on new actuators, Bremen, Germany, 23–25 June 2014

    Google Scholar 

  36. Zhang XL, Tan YH, Su MY, Xie YQ (2010) Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators. Physica B-Condensed Matter 405(12):2687–2693

    Article  Google Scholar 

  37. Hussain F, Khesro A, Lu Z, Wang G, Wang D (2020) Lead free multilayer piezoelectric actuators by economically new approach. Front Mater 7

    Google Scholar 

  38. PiezoDrive (2021) Piezoelectric actuators. https://www.piezodrive.com/actuators/

  39. Ahmadpour H, Mohammadzaheri M, Emadi M, Ghods V, Mehrabi D, Tafreshi R (2015) Neural modelling of a piezoelectric actuator inspired by the presiach approach. In: International conference on artificial intelligence, energy and manufacturing engineering

    Google Scholar 

  40. Wang G, Zhao Z, Tan J, Cui S, Wu H (2020) A novel multifunctional piezoelectric composite device for mechatronics systems by using one single PZT ring. Smart Mater Struct 29(5):055027

    Article  Google Scholar 

  41. Ceramics P (2021) Stack actuators. https://www.piceramic.com/en/products/piezoceramic-actuators/stack-actuators/

  42. Mohammadzaheri M, Grainger S, Bazghaleh M (2013) A system identification approach to the characterization and control of a piezoelectric tube actuator. Smart Mater Struct 22(10):105022

    Article  Google Scholar 

  43. Moheimani SOR, Yong YK (2008) Simultaneous sensing and actuation with a piezoelectric tube scanner. Rev Sci Instr 79(7)

    Google Scholar 

  44. Mohammadzaheri M, Grainger S, Kopaei MK, Bazghaleh M (2013) IMC-based feedforward control of a piezoelectric tube actuator. In: IEEE eighth international conference on intelligent sensors, sensor networks and information processing

    Google Scholar 

  45. Habibullah H (2020) 30 years of atomic force microscopy: creep, hysteresis, cross-coupling, and vibration problems of piezoelectric tube scanners. Measurement 159107776

    Google Scholar 

  46. Abramovitch DY, Andersson SB, Pao LY, Schitter G (2007) A tutorial on the mechanisms, dynamics, and control of atomic force microscopes. Am Control Conf 965–979

    Google Scholar 

  47. Moheimani SOR (2008) Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. Rev Sci Instrum 79(7):071101

    Article  Google Scholar 

  48. Mohammadzaheri M, Tafreshi R, Mohammad-Khorasani M, Bazghaleh M, Grainger S (2015) Evaluation of the induced voltage in driven electrodes of piezoelectric tube actuators for sensorless nanopositioning. In: IEEE 8th GCC conference and exhibition (GCCCE), pp 1–5

    Google Scholar 

  49. Piezo.com (2021) Introduction to Piezos. https://piezo.com/pages/introduction-to-piezos

  50. Ceramics P (2021) Piezo bender actuators. https://www.piceramic.com/en/products/piezoceramic-actuators/bender-actuators/

  51. Ghodsi M, Modabberifar M, Ueno T (2011) Quality factor, static and dynamic responses of miniature galfenol actuator at wide range of temperature. Int J Phys Sci 6(36):8143–8150

    Google Scholar 

  52. Group VP. Strain gage instrumentation, micro-measurements. http://www.vishaypg.com/docs/50002/50002.pdf

  53. PiezoDrive. Strain gauge position measurement systems. https://www.piezodrive.com/actuators/

  54. Akbari H, Kazerooni A (2018) Improving the coupling errors of a Maltese cross-beams type six-axis force/moment sensor using numerical shape-optimization technique. Measurement 126342–126355

    Google Scholar 

  55. Rerkratn A, Luangpol A, Petchmaneelumka W, Riewruja V (2020) Position signal detector for linear variable differential transformer. Energy Rep 6603–6607

    Google Scholar 

  56. electronicspecifier, e. https://www.electronicspecifier.com/products/communications/lvdt-range-suitable-for-high-frequency-response

  57. OMEGA, O. https://www.omega.com/en-us/control-monitoring/motion-and-position/displacement-transducers/ld500/

  58. Keyence K. https://www.keyence.co.uk/products/measure/laser-1d/lk-g5000/

  59. Omidi E, Mahmoodi SN (2016) Vibration control of collocated smart structures using H∞ modified positive position and velocity feedback. J Vib Control 22(10):2434–2442

    Article  MathSciNet  Google Scholar 

  60. Philtec (ed) Fiber optic displacement sensors

    Google Scholar 

  61. Ghodsi M, Ueno T, Teshima H, Hirano H, Higuchi T, Summers E (2007) “Zero-power” positioning actuator for cryogenic environments by combining magnetostrictive bimetal and HTS. Sens Actuat, A 135(2):787–791

    Article  Google Scholar 

  62. MicroSense. Precision capacitive sensor. http://www.microsense.net/products-position-sensors.htm

  63. Mohammadzaheri M, Emadi M, Ghodsi M, Jamshidi E, Bahadur I, Saleem A et al (2019) A variable-resistance digital charge estimator for piezoelectric actuators: an alternative to maximise accuracy and curb voltage drop. J Intell Mater Syst Struct 30(11):1699–1705

    Article  Google Scholar 

  64. Mohammadzaheri M, Emadi M, Ghodsi M, Bahadur IM, Zarog M, Saleem AJIJOAI et al. (2020) Development of a charge estimator for piezoelectric actuators: a radial basis function approach. Int J Artif Intell Mach Learn 10(1):31–44

    Google Scholar 

  65. Bazghaleh M, Mohammadzaheri M, Grainger S, Cazzolato B, Lu TF (2013) A new hybrid method for sensorless control of piezoelectric actuators, Sens Actuat A: Phys 19425–19430

    Google Scholar 

  66. Mousavi Lajimi SA, Friswell MI (2020) Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester. Nonlinear Dyn 1003029–1003042

    Google Scholar 

  67. Miri N, Mohammadzaheri M, Chen L (2013) A comparative study of different physics-based approaches to modelling of piezoelectric actuators. In: The IEEE/ASME international conference on advanced intelligent mechatronics

    Google Scholar 

  68. Mohammadzaheri M, Ziaeifar H, Bahadur I, Zarog M, Emadi M, Ghodsi M (2019) Data-driven modelling of engineering systems with small data, a comparative study of artificial intelligence techniques. In: 5th Iranian conference on signal processing and intelligent systems (ICSPIS)

    Google Scholar 

  69. Mohammadzaheri M, Grainger S, Bazghaleh M (2012) A comparative study on the use of black box modelling for piezoelectric actuators. Int J Adv Manuf Technol 631247–631255

    Google Scholar 

  70. Mohammadzaheri M, Grainger S, Bazghaleh M (2012) Fuzzy modeling of a piezoelectric actuator. Int J Precis Eng Manuf 13(5):663–670

    Article  Google Scholar 

  71. Mohammadzaheri M, Grainger S, Bazghaleh M, Yaghmaee P (2012) Intelligent modeling of a piezoelectric tube actuator. In: International symposium on innovations in intelligent systems and applications (INISTA)

    Google Scholar 

  72. Ahmed K, Yan P (2021) Modeling and identification of rate dependent hysteresis in piezoelectric actuated nano-stage: a gray box neural network based approach. IEEE Access 965440–965448

    Google Scholar 

  73. Miri N, Mohammadzaheri M, Chen L, Grainger S, Bazghaleh M (2013) Physics-based modelling of a piezoelectric actuator using genetic algorithm. In: IEEE symposium on industrial electronics and applications (ISIEA)

    Google Scholar 

  74. Bazghaleh M, Grainger S, Mohammadzaheri MJJOIMS, Structures (2018) A review of charge methods for driving piezoelectric actuators. J Intell Mater Syst Struct 29(10):2096–22104

    Google Scholar 

  75. Mohammadzaheri M, AlSulti S, Ghodsi M, Bahadur I, Emadi M (2021) Assessment of capacitor-based charge estimators for piezoelectric actuators. IEEE Int Conf Mech (ICM) 2021:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Mohammadzaheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammadzaheri, M., Soltani, P., Ghodsi, M. (2022). Micro/Nanopositioning Systems with Piezoelectric Actuators and Their Role in Sustainability and Ecosystems. In: Hehenberger, P., Habib, M., Bradley, D. (eds) EcoMechatronics. Springer, Cham. https://doi.org/10.1007/978-3-031-07555-1_14

Download citation

Publish with us

Policies and ethics