Skip to main content

Reduction of Air-Gap Flux Density Distortion for a 20 kW HTS Induction Motor

  • Conference paper
  • First Online:
Book cover Technological Innovation for Digitalization and Virtualization (DoCEIS 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 649))

Included in the following conference series:

  • 292 Accesses

Abstract

Nowadays, High-Temperature Superconducting (HTS) electric machines are widely used in industry due to the unique properties of HTS materials. Besides, the effect of space harmonics is a very serious challenge that must be considered in the design of HTS electric machines. In this paper, a high-temperature superconductor- induction/synchronous machine (HTS-ISM) with 20 kW power is provided to reduce air-gap flux density distortion. For a precise comparison, the main parameters of the machine are studied under the same conditions such as frequency, core material, pole number, critical current density, and voltage by the Finite Element Method. In addition to winding arrangement, the geometrical parameters of the machine also affect the space harmonics, so by modifying each of these parameters, the amount of Total Harmonic Distortion (THD) is obtained in each case. In the proposed model, the amount of THD is significantly reduced, which makes the air-gap flux density more sinusoidal. Torque ripple has also been improved in the proposed machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Umemoto, K., et al.: Development of 1 MW-class HTS motor for podded ship propulsion system. J. Phys. Conf. 234 (2010)

    Google Scholar 

  2. Gamble, B., Snitchler, G., Macdonald, T.: Full power test of a 36.5 MW HTS propulsion motor. IEEE Trans. Appl. Supercond. 21, 1083–1088 (2011)

    Article  Google Scholar 

  3. Ueno, E., Kato, T., Hayashi, K.: Race-track coils for a 3 MW HTS ship motor. Physica C: Supercond. Appl. 504, 111–114 (2014)

    Article  Google Scholar 

  4. Huang, Z., et al.: Control and operation of a high temperature superconducting synchronous motor. IEEE Trans. Appl. Supercond. 3, 235200204–245200204 (2013)

    Google Scholar 

  5. Snitchler, G., Gamble, B., Kalsi, S.S.: The performance of a 5 MW high temperature superconductor ship propulsion motor. IEEE Trans. Appl. Supercond. 15, 2206–2209 (2005)

    Article  Google Scholar 

  6. Karashima, T., Nakamura, T., Okuno, M.: Multidisciplinary analysis of the transient performance of a 20 kW class HTS induction/synchronous motor cooled with a cryocooler and gaseous air-gap coolant. Cryogenics 99, 9961–9967 (2019)

    Article  Google Scholar 

  7. Ardestani, M., Arish, N., Yaghobi, H.: A new HTS dual stator linear permanent magnet Vernier machine with Halbach array for wave energy conversion. Physica C: Supercond. Appl. 569, 1353593 (2020)

    Article  Google Scholar 

  8. Go, B.S., Sung, H.J., Park, M., Yu, I.K.: Structural design of a module coil for a 12-MW class HTS generator for wind turbine. IEEE Trans. Appl. Supercond. 27, 1–5 (2017)

    Article  Google Scholar 

  9. Kalsi, S.S.: Applications of High Temperature Superconductors to Electric Power Equipment. Wiley, Hoboken (2011)

    Book  Google Scholar 

  10. Ikeda, K., et al.: DC and AC current transport characteristics of the HTS stator coils in an HTS induction/synchronous motor. IEEE Trans. Appl. Supercond. 28(3), 14–18 (2018)

    Article  Google Scholar 

  11. Yazdani-Asrami, M., Gholamian, S.A., Mirimani, S.M., Adabi, J.: Influence of field-dependent critical current on harmonic AC loss analysis in HTS coils for superconducting transformers supplying non-linear loads. Cryogenics 113, 103234 (2021)

    Article  Google Scholar 

  12. Wei, L., Nakamura, T., Yoshikawa, M., Itoh, Y., Terazawa, T.: Comparison of different stator winding configurations of fully high-temperature superconducting induction/synchronous motor. IEEE Trans. Appl. Supercond. 30(4), 4–7 (2020)

    Article  Google Scholar 

  13. Lukasik, B., Goddard, K.F., Sykulski, J.K.: Finite element assisted method to reduce harmonic content in the airgap flux density of a high temperature superconducting coreless rotor generator. In: 2008 IET 7th International Conference on Computation in Electromagnetics, pp. 56–57 (2008)

    Google Scholar 

  14. On, G.N.: Guidance Note to Control of Harmonics in Electrical Power Systems, American Bureau of shipping ABS plaza 16855 Northchase Drive Houston, TX 77060 USA (2006)

    Google Scholar 

  15. Wakileh, G.J.: Harmonics in rotating machines. Electric Power Syst. Res. 66, 31–37 (2003)

    Article  Google Scholar 

  16. Sekiguchi, D., et al.: Trial test of fully HTS induction/synchronous machine for next generation electric vehicle. IEEE Trans. Appl. Supercond. 22, 5200904 (2012)

    Article  Google Scholar 

  17. Karashima, T., et al.: Experimental and analytical studies on highly efficient regenerative characteristics of a 20-kW class HTS induction/synchronous motor. IEEE Trans. Appl. Supercond. 27, 1–5 (2017)

    Article  Google Scholar 

  18. Shimura, H., Nakamura, T., Kitano, H., Nishimura, T., Amemiya, N., Itoh, Y.: Calculated characteristics of HTS induction/synchronous machine below and above its critical temperature. IEEE Trans. Appl. Supercond. 23, 5201705 (2013)

    Article  Google Scholar 

  19. Ardestani, M., Hefaz, H., Arish, N., Yaghobi, H.: Electromagnetic analysis of partial and fully HTS induction motor using finite element method. In: 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, pp. 1–5 (2020)

    Google Scholar 

  20. Cordier, J.A.: Modelling space harmonics in induction machines for real-time applications. Ph.D. thesis Technical University of Munich (2020)

    Google Scholar 

  21. Morita, G., Nakamura, T., Muta, I.: Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit. Supercond. Sci. Technol. 19, 473–478 (2006)

    Article  Google Scholar 

  22. Nakamura, T., Miyake, H., Ogama, Y., Morita, G., Muta, I., Hoshino, T.: Fabrication and characteristics of HTS induction motor by the use of Bi-2223/Ag squirrel-cage rotor. IEEE Trans. Appl. Supercond. 16, 1469–1472 (2006)

    Article  Google Scholar 

  23. Morita, G., Nakamura, T., Muta, I.: Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit. IEEE Trans. Appl. Supercond. J. 19, 473–478 (2006)

    Google Scholar 

  24. Murakami, M.: Magnetic properties of high-temperature superconductors. IEEE Transl. J. Magn. Jpn. 8(6), 405–414 (1993)

    Article  Google Scholar 

  25. Ikeda, K., et al.: Hysteretic rotating characteristics of an HTS induction/synchronous motor. IEEE Trans. Appl. Supercond. 27, 1–5 (2017)

    Article  Google Scholar 

  26. Laksar, J., Sobra, J., Veg, L.: Numerical calculation of the effect of the induction machine load on the air gap magnetic flux density distribution. In: 18th International Scientific Conference on Electric Power Engineering (EPE), pp. 1–6 (2017)

    Google Scholar 

  27. Ainslie, M.: Transport AC loss in high-temperature superconducting coils. Ph.D. thesis, University of Cambridge (2012)

    Google Scholar 

  28. Yazdani-Asrami, M., Gholamian, S.A., Mirimani, S.M., Adabi, J.: Calculation of AC magnetizing loss of ReBCO superconducting tapes subjected to applied distorted magnetic fields. J. Supercond. Novel Magn. 31(12), 3875–3888 (2018). https://doi.org/10.1007/s10948-018-4695-7

    Article  Google Scholar 

  29. Wang, L., Zheng, J., Jiang, F., Kang, R.: Numerical simulation of AC loss in 2G high-temperature superconducting coils with 2D-axisymmetric finite element model by magnetic field formulation module. J. Supercond. Novel Magn. 29(8), 2011–2018 (2016). https://doi.org/10.1007/s10948-016-3523-1

    Article  Google Scholar 

  30. Kulkarni, R., Prasad, K., Lie, T.T., Badcock, R.A., Bumby, C.W., Sung, H.J.: Design improvisation for reduced harmonic distortion in a flux pump-integrated HTS generator. Energies 10(9), 1344 (2017)

    Article  Google Scholar 

  31. Chen, Q., Liu, G., Liu, Z., Li, X.: Design and analysis of a new fully stator-HTS motor. IEEE Trans. Appl. Supercond. 24, 1–5 (2014)

    Google Scholar 

  32. Liu, B., Badcock, R., Shu, H., Tan, L., Fang, J.: Electromagnetic characteristic analysis and optimization design of a novel HTS coreless induction motor for high-speed operation. IEEE Trans. Appl. Supercond. 28, 1–5 (2018)

    Google Scholar 

  33. Arish, N., Ardestani, M., Hekmati, A.: Optimum structure of rotor slot for a 20 kW HTS induction motor. Physica C: Supercond. Appl. 582, 1353829 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ardestani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ardestani, M., Izadfar, H.R. (2022). Reduction of Air-Gap Flux Density Distortion for a 20 kW HTS Induction Motor. In: Camarinha-Matos, L.M. (eds) Technological Innovation for Digitalization and Virtualization. DoCEIS 2022. IFIP Advances in Information and Communication Technology, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-031-07520-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07520-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07519-3

  • Online ISBN: 978-3-031-07520-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics