Skip to main content

Regional Hydrological Model with Global Climate Change of Mean Annual Flows of the Santa River Basin, Applying the Fokker–Planck–Kolmogorov Equation

  • Conference paper
  • First Online:
Sustainable Development of Water and Environment

Abstract

Global climate change generates a variation in precipitation and temperature throughout the planet, consequently altering the average, maximum and minimum values of river flows in various parts of the world, causing floods and droughts. Between 1932 and 1994, the glaciers of the tropical Andes in Peru suffered a setback due to the increase in temperature, causing an increase in flow rates. Commonly, hydrological studies applied to the development of hydraulic works consider a stationary hydrological regime; however, with the development and research on global climate change, the need to evaluate the hydrological regime as a non-stationary one arises. This non-stationarity approach can foresee hydraulic projects of maximum and minimum flows not expected determined by current methodologies. The objective of the research was to develop a regional hydrological model of annual mean flows under the influence of global climate change (climate change scenario estimated by SENAMHI for the year 2030) in the Santa River basin. This research used as data the mean annual flow series of the following hydrometric stations: Querococha, Olleros, Quillcay, Chancos, Llanganuco, Parón, Colcas, Los Cedros and Quitaracsa; applying the methodology of linear stochastic models and the Fokker–Planck–Kolmogorov equation, for the development of a regional hydrological model designed to predict future mean annual flows. A regional hydrological model is presented that depends on the basin area with and without snowfall; in addition, it was identified that the model that best describes the stochastic behavior of the mean annual flows is the AR model (1), and that due to the influence of climate change the estimated mean flow decreased by 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrovich J (1999) Estabilidad de la probabilidad de las características de la escorrentía anual por la acción antrópica. Universidad Estatal Hidrometeorológica de Rusia, San Petersburgo, Federación de Rusia, 1999, 155 pág

    Google Scholar 

  • Chow V, Maidment D, Mays L (1994) Hidrología aplicada. McGraw-Hill

    Google Scholar 

  • Domínguez E (2004) Predicción estocástica del ingreso del flujo de agua a los embalses de las centrales hidroeléctricas de la República de Colombia. Universidad Estatal Hidrometeorológica de Rusia. Federación de Rusia, San Petersburgo, 231 pág

    Google Scholar 

  • Earls J (2008) Manejo de cuencas y cambio climático. Los Andes y las poblaciones altoandinas en la agenda de la regionalización y la descentralización 1:113–126

    Google Scholar 

  • González M (2009) Análisis de series temporales económicas: Modelos ARIMA

    Google Scholar 

  • Gujarati D, Porter D (2010) Econometría (quinta edición). Editorial Mc. Graw Hill, México

    Google Scholar 

  • Kovalenko VV (1993) Modelación de procesos hidrológicos, San Petersburgo, Editorial Hidrometeoizdat, Rusia, 256 pág

    Google Scholar 

  • Kovalenko VV, Viktorova NV, Gaidukova EV Khaustov VA, Devyatov VS (2020) Resultados de las investigaciones de los procesos hidrológicos probabilísticos en RHSMU, Universidad Hidrometeorológica Estatal de Rusia 60:255–268

    Google Scholar 

  • Pindyck R, Rubinfeld D (1998) Econometric models and econometric forescast, McGrawHill, New York

    Google Scholar 

  • Quisca SI (2019) Apunte de clases del curso de Ingeniería de Recursos Hidráulicos, Capítulo 4, Escuela de Ingeniería Civil de la FIGMMG, Universidad Nacional Mayor de San Marcos. Lima, Perú

    Google Scholar 

  • Rodríguez A (2011) Cambio climático, precipitaciones, sociedad y desastres en América Latina: relaciones y necesidades. Revista Peruana de Medicina Experimental y Salud Publica 28(1):165–166

    Google Scholar 

  • Vuille M (2013) El cambio climático y los recursos hídricos en los andes tropicales. Banco Interamericano de Desarrollo 21

    Google Scholar 

  • Weber J, Dasso C, Jorquera E (2010) Desarrollo y calibración de un modelo hidrológico de simulación mixta. Mecánica Computacional 29(39):4013–4037

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Quisca Astocahuana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castilla Chanco, E.V., Quisca Astocahuana, S. (2022). Regional Hydrological Model with Global Climate Change of Mean Annual Flows of the Santa River Basin, Applying the Fokker–Planck–Kolmogorov Equation. In: Jeon, HY. (eds) Sustainable Development of Water and Environment. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-07500-1_3

Download citation

Publish with us

Policies and ethics