Skip to main content

Process Mining Challenges Perceived by Analysts: An Interview Study

Part of the Lecture Notes in Business Information Processing book series (LNBIP,volume 450)

Abstract

Process mining analysts need to work with event data to discover (business) processes, interpret results and report meaningful conclusions. Although process mining tools are constantly enhanced and advanced techniques are developed to enrich the functional scope in the field, little is known about the individual needs of analysts and the issues they face while conducting process mining projects. This paper aims to close this gap by uncovering perceived challenges occurring in practice. Based on an interview study with 41 participants, we identify and describe 23 challenges, spanning different project phases and directly affecting the work of process mining analysts. We discuss whether methods and techniques exist that can help to overcome these challenges and where further research is needed to devise new solutions and integrate existing ones better into process mining practice.

Keywords

  • Process mining
  • Challenges
  • Interview study
  • Process analysis
  • Work practices

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-07475-2_1
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-07475-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    https://www.gdpr.eu.

References

  1. Andrews, R., et al.: Leveraging data quality to better prepare for process mining: an approach illustrated through analysing road trauma pre-hospital retrieval and transport processes in Queensland. Int. J. Environ. Res. Public. Health. 16(7), 1138 (2019)

    CrossRef  Google Scholar 

  2. vom Brocke, J., Jans, M., Mendling, J., Reijers, H.A.: A five-level framework for research on process mining. Bus. Inf. Syst. Eng. 63(5), 483–490 (2021). https://doi.org/10.1007/s12599-021-00718-8

    CrossRef  Google Scholar 

  3. De Leoni, M., Mannhardt, F.: Road Traffic Fine Management Process. Eindhoven University of Technology, Dataset (2015)

    Google Scholar 

  4. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and abstraction of event data for process mining. WIREs Data Mining Knowl. Discov. 10(3), e1346 (2020)

    Google Scholar 

  5. Emamjome, F., Andrews, R., ter Hofstede, A.H.M.: A case study lens on process mining in practice. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM 2019. LNCS, vol. 11877, pp. 127–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33246-4_8

    CrossRef  Google Scholar 

  6. Goodman, L.A.: Snowball sampling. Ann. math. stat. 148–170 (1961)

    Google Scholar 

  7. Grisold, T., Mendling, J., Otto, M., vom Brocke, J.: Adoption, use and management of process mining in practice. Bus. Process Manag. J. (2020)

    Google Scholar 

  8. Kandel, S., Paepcke, A., Hellerstein, J.M., Heer, J.: Enterprise data analysis and visualization: an interview study. IEEE Trans. Vis. Comput. Graph. 18(12), 2917–2926 (2012)

    CrossRef  Google Scholar 

  9. Kerremans, M., Searle, S., Srivastava, T., Iijima, K.: Market Guide For Process Mining. Gartner Inc. (2020)

    Google Scholar 

  10. Klinkmüller, C., Müller, R., Weber, I.: Mining process mining practices: an exploratory characterization of information needs in process analytics. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 322–337. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_21

    CrossRef  Google Scholar 

  11. Martin, N., et al.: Opportunities and challenges for process mining in organisations: results of a Delphi study. Bus. Inf. Syst. Eng. 63, 1–7 (2021)

    Google Scholar 

  12. Munoz-Gama, J., et al.: Process mining for healthcare: characteristics and challenges. J. Biomed. Inform. 127, 103994 (2022)

    CrossRef  Google Scholar 

  13. R’Bigui, H., Cho, C.: The state-of-the-art of business process mining challenges. Int. J. Bus. Process. Integr. Manag. 8(4), 285–303 (2017)

    CrossRef  Google Scholar 

  14. Saldaña, J.: The Coding Manual For Qualitative Researchers. Sage, Thousand Oaks (2015)

    Google Scholar 

  15. Suriadi, S., Andrews, R., ter Hofstede, A.H., Wynn, M.T.: Event log imperfection patterns for process mining: towards a systematic approach to cleaning event logs. Inf. Syst. 64, 132–150 (2017)

    CrossRef  Google Scholar 

  16. Syed, R., Leemans, S.J.J., Eden, R., Buijs, J.A.C.M.: Process mining adoption. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 229–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_14

    CrossRef  Google Scholar 

  17. Taherdoost, H.: A review of technology acceptance and adoption models and theories. Proc. Manuf. 22, 960–967 (2018)

    Google Scholar 

  18. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19

    CrossRef  Google Scholar 

  19. Venkatesh, V., Thong, J.Y., Xu, X.: Unified theory of acceptance and use of technology: a synthesis and the road ahead. J. Assoc. Inf. Syst. 17(5), 328–376 (2016)

    Google Scholar 

  20. Wongsuphasawat, K., Liu, Y., Heer, J.: Goals, Process, and Challenges of Exploratory Data Analysis: An Interview Study. arXiv:1911.00568 (2019)

  21. Zerbato, F., Soffer, P., Weber, B.: Initial insights into exploratory process mining practices. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNBIP, vol. 427, pp. 145–161. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85440-9_9

    CrossRef  Google Scholar 

Download references

Acknowledgment

We thank participants for taking time to participate in the study and for sharing their experience. Funding. This work is part of the ProMiSE project, funded by the Swiss National Science Foundation under Grant No.: 200021_197032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zimmermann, L., Zerbato, F., Weber, B. (2022). Process Mining Challenges Perceived by Analysts: An Interview Study. In: Augusto, A., Gill, A., Bork, D., Nurcan, S., Reinhartz-Berger, I., Schmidt, R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2022 2022. Lecture Notes in Business Information Processing, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-031-07475-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07475-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07474-5

  • Online ISBN: 978-3-031-07475-2

  • eBook Packages: Computer ScienceComputer Science (R0)