Skip to main content

Embryology of the Parathyroid Glands

  • Chapter
  • First Online:
Parathyroid Gland Disorders
  • 435 Accesses

Abstract

During the fifth–sixth weeks of gestation, the endoderm of the dorsal surface of the third pharyngeal pouch differentiates into the inferior parathyroid glands (PTGs), while the ventral surface differentiates into the thymus. The endoderm of the dorsal wing of the fourth pouch differentiates into the superior PTGs, while the ventral wing differentiates into the ultimo-branchial body. By the seventh week of gestation, the inferior and superior PTGs migrate inferiorly and medially until they get arrested on the dorsal side of the caudal thyroid. The superior glands end up on the posterior surface of the thyroid gland. The thymus/parathyroid primordium continues to move in a caudal-ventral-medial direction toward the anterior thoracic cavity. During this time, the parathyroid domain remains attached to the cranial pole of the thymus. This chapter describes, in detail, development of the PTG, its origin, its organogenesis, molecular regulators, differentiation, survival, and stability. In addition, this chapter addresses the thymus/parathyroid connection as well as parathyroid hormone and related protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilmour JR. The embryology of the parathyroid glands, the thymus, and certain associated rudiments. J Pathol. 1937;45:507–22.

    Article  Google Scholar 

  2. Liu Z, Farley A, Chen L, Kirby BJ, Kovacs CS, Blackburn CC, et al. Thymus-associated parathyroid hormone has two cellular origins with distinct endocrine and immunological functions. PLoS Genet. 2010;6(12):e1001251.

    Article  CAS  Google Scholar 

  3. Okabe M, Graham A. The origin of the parathyroid gland. Proc Natl Acad Sci U S A. 2004;101(51):17716–9.

    Article  CAS  Google Scholar 

  4. Neves H, Dupin E, Parreira L, Le Douarin NM. Modulation of Bmp4 signaling in the epithelial mesenchymal interactions that take place in early thymus and parathyroid development in avian embryos. Dev Biol. 2012;361(2):208–19.

    Article  CAS  Google Scholar 

  5. Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development. 2011;138(18):3865–78.

    Article  CAS  Google Scholar 

  6. Kim J, Jones BW, Zock C, Chen Z, Wang H, Goodman CS, et al. Isolation and characterization of mammalian homologs of the drosophila gene glial cells missing. Proc Natl Acad Sci U S A. 1998;95(21):12364–9.

    Article  CAS  Google Scholar 

  7. Gardiner JR, Jackson AL, Gordon J, Lickert H, Manley NR, Basson MA. Localized inhibition of FGF signaling in the third pharyngeal pouch is required for normal thymus and parathyroid organogenesis. Development. 2012;139(18):3456–66.

    Article  CAS  Google Scholar 

  8. Gordon J, Wilson VA, Blair NF, Sheridan J, Farley A, Wilson L, et al. Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol. 2004;5(5):546–53.

    Article  CAS  Google Scholar 

  9. Gordon J, Patel SR, Mishina Y, Manley NR. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol. 2010;339(1):141–54.

    Article  CAS  Google Scholar 

  10. Foster KE, Gordon J, Cardenas K, Veiga-Fernandes H, Makinen T, Grigorieva E, et al. EphBephrin-B2 interactions are required for thymus migration during organogenesis. Proc Natl Acad Sci U S A. 2010;107(30):13414–9.

    Article  CAS  Google Scholar 

  11. Hashem El-hosseini S, Wegner M. Impacts of a new transcription factor family: mammalian GCM proteins in health and disease. J Cell Biol. 2004;166(6):765–8.

    Article  Google Scholar 

  12. Gunther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, et al. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature. 2000;406(6792):199–203.

    Article  CAS  Google Scholar 

  13. Liu Z, Yu S, Manley NR. Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev Biol. 2007;305(1):333–46.

    Article  CAS  Google Scholar 

  14. Chisaka O, Capecchi MR. Regionally-restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox—1.5. Nature. 1991;350:473–9.

    Article  CAS  Google Scholar 

  15. Manley NR, Condie BG. Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. Prog Mol Biol Transl Sci. 2010;92:103–20.

    Article  CAS  Google Scholar 

  16. Chen L, Zhao P, Wells L, Amemiya CT, Condie BG, Manley NR. Mouse and zebrafi sh Hoxa3 orthologues have nonequivalent in vivo protein function. Proc Natl Acad Sci U S A. 2010;107(23):10555–60.

    Article  CAS  Google Scholar 

  17. Chojnowski J, Trau H, Masuda K, Manley N. Complex tissue specific roles for HOXA3 during thymus and parathyroid development. Paper presented at the international society for developmental biology conference, Cancun, June 2013.

    Google Scholar 

  18. Su D, Ellis S, Napier A, Lee K, Manley NR. Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol. 2001;236(2):316–29.

    Article  CAS  Google Scholar 

  19. Manley N, Bain V, Gordon J, Gutierrez K, Cardenas K, Richie E. Regulation of thymus and parathyroid organ fate specification by Shh and Tbx1. Paper presented at mouse molecular genetics conference, Asilomar, 2012.

    Google Scholar 

  20. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet. 2001;27(3):286–91.

    Article  CAS  Google Scholar 

  21. Grigorieva IV, Mirczuk S, Gaynor KU, Nesbit MA, Grigorieva EF, Wei Q, et al. Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest. 2010;120(6):2144–55.

    Article  CAS  Google Scholar 

  22. Bowl MR, Nesbit MA, Harding B, Levy E, Jefferson A, Volpi E, et al. An interstitial deletion insertion involving chromosomes 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism. J Clin Invest. 2005;115(10):2822–31.

    Article  CAS  Google Scholar 

  23. Griffith AV, Cardenas K, Carter C, Gordon J, Iberg A, Engleka K, et al. Increased thymus- and decreased parathyroid-fated organ domains in splotch mutant embryos. Dev Biol. 2009;327(1):216–27.

    Article  CAS  Google Scholar 

  24. Moore-Scott BA, Manley NR. Differential expression of sonic hedgehog along the anterior posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev Biol. 2005;278(2):323–35.

    Article  CAS  Google Scholar 

  25. Grevellec A, Graham A, Tucker AS. Shh signaling restricts the expression of Gcm2 and controls the position of the developing parathyroids. Dev Biol. 2011;353(2):194–205.

    Article  CAS  Google Scholar 

  26. Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D. Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol. 2001;235(1):62–73.

    Article  CAS  Google Scholar 

  27. Mannstadt M, Bertrand G, Muresan M, Weryha G, Leheup B, Pulusani SR, et al. Dominant negative GCMB mutations cause an autosomal dominant form of hypo-parathyroidism. J Clin Endocrinol Metab. 2008;93(9):3568–76.

    Article  CAS  Google Scholar 

  28. Ding C, Buckingham B, Levine MA. Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest. 2001;108(8):1215–20.

    Article  CAS  Google Scholar 

  29. Kamitani-Kawamoto A, Hamada M, Moriguchi T, Miyai M, Saji F, Hatamura I, et al. MafB interacts with Gcm2 and regulates parathyroid hormone expression and parathyroid development. J Bone Miner Res. 2011;26(10):2463–72.

    Article  CAS  Google Scholar 

  30. Balling R, Erben RG. From parathyroid to thymus, via glial cells. Nat Med. 2000;6(8):860–1.

    Article  CAS  Google Scholar 

  31. Woods Ignatoski KM, Bingham EL, Frome LK, Doherty GM. Directed trans-differentiation of thymus cells into parathyroid-like cells without genetic manipulation. Tissue Eng Part C Methods. 2011;17(11):1051–9.

    Article  CAS  Google Scholar 

  32. Liu C, Saito F, Liu Z, Lei Y, Uehara S, Love P, et al. Coordination between CCR7- and CCR9- mediated chemokine signals in prevascular fetal thymus colonization. Blood. 2006;108(8):2531–9.

    Article  CAS  Google Scholar 

  33. Liu C, Ueno T, Kuse S, Saito F, Nitta T, Piali L, et al. The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood. 2005;105(1):31–9.

    Article  CAS  Google Scholar 

  34. Dooley J, Erickson M, Gillard GO, Farr AG. Cervical thymus in the mouse. J Immunol. 2006;176(11):6484–90.

    Article  CAS  Google Scholar 

  35. Terszowski G, Muller SM, Bleul CC, Blum C, Schirmbeck R, Reimann J, et al. Evidence for a functional second thymus in mice. Science. 2006;312(5771):284–7.

    Article  CAS  Google Scholar 

  36. Li J, Liu Z, Xiao S, Manley NR. Trans-differentiation of parathyroid cells into cervical thymi promotes atypical T-cell development. Nat Commun. 2013;4:2959–64.

    Article  Google Scholar 

  37. Dunbar ME, Wysolmerski JJ. Parathyroid hormone-related protein: a developmental regulatory molecule necessary for mammary gland development. J Mammary Gland Biol Neoplasia. 1999;4:21–34.

    Article  CAS  Google Scholar 

  38. Alman BA, Wunder JS. Parathyroid hormone-related protein regulates glioma-associated oncogene transcriptional activation: lessons learned from bone development and cartilage neoplasia. Ann N Y Acad Sci. 2008;1144:36–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakr, M.F. (2022). Embryology of the Parathyroid Glands. In: Parathyroid Gland Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-07418-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07418-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07417-2

  • Online ISBN: 978-3-031-07418-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics