Skip to main content

Contemporary Applications of 3D Printing in Prosthodontics

  • Chapter
  • First Online:
3D Printing in Oral Health Science

Abstract

3D printing or additive manufacturing has gained grounds in all disciplines of dentistry. The specialty of prosthodontics is not alienated from utilization of 3D printing. The inroads made by 3D printing in prosthodontics have initiated a new pattern of workflow of prosthesis fabrication. With the underpinning advantage of fewer assembly steps and elimination of the cumbersome manual laboratory operations, 3D printing promises a possibility of a cost-saving model coupled with digital designing and automated quality control. One can visualize the applications of 3D printing in all specialties of prosthodontics, including complete denture, fixed dental prosthesis, implant dentistry, and maxillofacial prosthesis fabrication, each moving at its own pace. As 3D printing revamps the landscape of prosthodontic practice, the dental practitioners need to familiarize themselves with the nuances of techniques, the mechanics, and the materials associated with the 3D printing process for each type of application in the discipline. The current chapter presents an overview of the numerous applications and workflow of 3D printing in prosthodontics. Comparison of the outcome of 3D printing with the conventional procedures and CAD CAM procedures shall also be drawn in order to highlight the prevailing stance as well as identify the further scope for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pillai S, Upadhyay A, Khayambashi P, Farooq I, Sabri H, Tarar M, et al. Dental 3D-printing: transferring art from the laboratories to the clinics. Polymers. 2021;13(1):157.

    Article  Google Scholar 

  2. Anadioti E, Musharbash L, Blatz MB, Papavasiliou G, Kamposiora P. 3D printed complete removable dental prostheses: a narrative review. BMC Oral Health. 2020;20(1):343.

    Article  Google Scholar 

  3. Cristache C, Totu E, Grosu A, Ene O, Beuran I, Burlibasa M. Nanocomposite for rapid prototyped complete denture eighteen months follow-up on clinical performance. Rev Chim. 2019;70(2):387–92.

    Article  Google Scholar 

  4. Alharbi N, Wismeijer D, Osman RB. Additive manufacturing techniques in prosthodontics: where do we currently stand? A critical review. Int J Prosthodont. 2017;30(5):474–84.

    Article  Google Scholar 

  5. Formlabs introduces 3-D printed dentures [Internet]. Dentistryiq.com. 2019 [cited 25 October 2021]. Available from: https://www.dentistryiq.com/dentistry/products/restorative-products/article/16363613/formlabs-introduces-3d-printed-dentures.

  6. Felton DA. Complete edentulism and comorbid diseases: an update. J Prosthodont. 2016;25(1):5–20.

    Article  Google Scholar 

  7. Bidra AS, Taylor TD, Agar JR. Computer-aided technology for fabricating complete dentures: systematic review of historical background, current status, and future perspectives. J Prosthet Dent. 2013;109(6):361–6.

    Article  Google Scholar 

  8. Kattadiyil MT, Jekki R, Goodacre CJ, Baba NZ. Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. J Prosthet Dent. 2015;114(6):818–25.

    Article  Google Scholar 

  9. Fernandez MA, Nimmo A, Behar-Horenstein LS. Digital denture fabrication in pre- and postdoctoral education: a survey of U.S. dental schools. J Prosthodont. 2016;25(1):83–90.

    Article  Google Scholar 

  10. Wu J, Cheng Y, Gao B, Yu H. A novel digital altered cast impression technique for fabricating a removable partial denture with a distal extension. J Am Dent Assoc. 2020;151(4):297–302.

    Article  Google Scholar 

  11. Maragliano-Muniz P, Kukucka ED. Incorporating digital dentures into clinical practice: flexible workflows and improved clinical outcomes. J Prosthodont. 2021;30(S2):125–32.

    Article  Google Scholar 

  12. Lee SJ, Betensky RA, Gianneschi GE, Gallucci GO. Accuracy of digital versus conventional implant impressions. Clin Oral Implants Res. 2015;26(6):715–9.

    Article  Google Scholar 

  13. Wilk BL. Intraoral digital impressioning for dental implant restorations versus traditional implant impression techniques. Compend Contin Educ Dent. 2015;36(7):529–30, 532–3.

    Google Scholar 

  14. Patzelt SB, Vonau S, Stampf S, Att W. Assessing the feasibility and accuracy of digitizing edentulous jaws. J Am Dent Assoc. 2013;144(8):914–20.

    Article  Google Scholar 

  15. Flügge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofac Orthop. 2013;144(3):471–8.

    Article  Google Scholar 

  16. Massad JJ, Connelly ME, Rudd KD, Cagna DR. Occlusal device for diagnostic evaluation of maxillomandibular relationships in edentulous patients: a clinical technique. J Prosthet Dent. 2004;91(6):586–90.

    Article  Google Scholar 

  17. Alqarni H, AlHelal A, Kattadiyil MT. Computer-engineered complete denture fabrication with conventional clinical steps: a technique to overcome protocol limitations. J Prosthet Dent. 2019;122(5):430–4.

    Article  Google Scholar 

  18. Akerly WB. Recording jaw relationships in edentulous patients. Dent Clin N Am. 1996;40(1):53–70.

    Article  Google Scholar 

  19. Hassan B, Greven M, Wismeijer D. Integrating 3D facial scanning in a digital workflow to CAD/CAM design and fabricate complete dentures for immediate total mouth rehabilitation. J Adv Prosthodont. 2017;9(5):381–6.

    Article  Google Scholar 

  20. Clark WA, Duqum I, Kowalski BJ. The digitally replicated denture technique: a case report. J Esthet Restor Dent. 2019;31(1):20–5.

    Google Scholar 

  21. Schweiger J, Stumbaum J, Edelhoff D, Güth JF. Systematics and concepts for the digital production of complete dentures: risks and opportunities. Int J Comput Dent. 2018;21(1):41–56.

    Google Scholar 

  22. Kraemer Fernandez P, Unkovskiy A, Benkendorff V, Klink A, Spintzyk S. Surface characteristics of milled and 3D printed denture base materials following polishing and coating: an in-vitro study. Materials (Basel). 2020;13(15):3305.

    Article  Google Scholar 

  23. Schweiger J, Güth JF, Edelhoff D, Stumbaum J. Virtual evaluation for CAD-CAM-fabricated complete dentures. J Prosthet Dent. 2017;117(1):28–33.

    Article  Google Scholar 

  24. Chen H, Wang H, Lv P, Wang Y, Sun Y. Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture. Biomed Res Int. 2015;2015:453968.

    Article  Google Scholar 

  25. Kalberer N, Mehl A, Schimmel M, Müller F, Srinivasan M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: an in vitro evaluation of trueness. J Prosthet Dent. 2019;121(4):637–43.

    Article  Google Scholar 

  26. Presotto AGC, Barão VAR, Bhering CLB, Mesquita MF. Dimensional precision of implant-supported frameworks fabricated by 3D printing. J Prosthet Dent. 2019;122(1):38–45.

    Article  Google Scholar 

  27. Saponaro PC, Yilmaz B, Johnston W, Heshmati RH, McGlumphy EA. Evaluation of patient experience and satisfaction with CAD-CAM-fabricated complete dentures: a retrospective survey study. J Prosthet Dent. 2016;116(4):524–8.

    Article  Google Scholar 

  28. AlHelal A, Goodacre BJ, Kattadiyil MT, Swamidass R. Errors associated with digital preview of computer-engineered complete dentures and guidelines for reducing them: a technique article. J Prosthet Dent. 2018;119(1):17–25.

    Article  Google Scholar 

  29. McLaughlin JB, Ramos V Jr, Dickinson DP. Comparison of fit of dentures fabricated by traditional techniques versus CAD/CAM technology. J Prosthodont. 2019;28(4):428–35.

    Article  Google Scholar 

  30. Choi JJE, Uy CE, Plaksina P, Ramani RS, Ganjigatti R, Waddell JN. Bond strength of denture teeth to heat-cured, CAD/CAM and 3D printed denture acrylics. J Prosthodont. 2020;29(5):415–21.

    Article  Google Scholar 

  31. Cha HS, Park JM, Kim TH, Lee JH. Wear resistance of 3D-printed denture tooth resin opposing zirconia and metal antagonists. J Prosthet Dent. 2020;124(3):387–94.

    Article  Google Scholar 

  32. Park C, Kee W, Lim HP, Park SW. Combining 3D-printed metal and resin for digitally fabricated dentures: a dental technique. J Prosthet Dent. 2020;123(3):389–92.

    Article  Google Scholar 

  33. Lee S, Hong SJ, Paek J, Pae A, Kwon KR, Noh K. Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. J Adv Prosthodont. 2019;11(1):55–64.

    Article  Google Scholar 

  34. Arslan M, Murat S, Alp G, Zaimoglu A. Evaluation of flexural strength and surface properties of prepolymerized CAD/CAM PMMA-based polymers used for digital 3D complete dentures. Int J Comput Dent. 2018;21(1):31–40.

    Google Scholar 

  35. Aguirre BC, Chen JH, Kontogiorgos ED, Murchison DF, Nagy WW. Flexural strength of denture base acrylic resins processed by conventional and CAD-CAM methods. J Prosthet Dent. 2020;123(4):641–6.

    Article  Google Scholar 

  36. PrpiĆ V, Schauperl Z, ĆatiĆ A, DulčiĆ N, ČimiĆ S. Comparison of mechanical properties of 3D-printed, CAD/CAM, and conventional denture base materials. J Prosthodont. 2020;29(6):524–8.

    Google Scholar 

  37. Bonnet G, Batisse C, Bessadet M, Nicolas E, Veyrune JL. A new digital denture procedure: a first practitioners appraisal. BMC Oral Health. 2017;17(1):155.

    Article  Google Scholar 

  38. Kado D, Sakurai K, Sugiyama T, Ueda T. Evaluation of cleanability of a titanium dioxide (TiO2)-coated acrylic resin denture base. Prosthodont Res Pract. 2005;4(1):69–76.

    Article  Google Scholar 

  39. Arai T, Ueda T, Sugiyama T, Sakurai K. Inhibiting microbial adhesion to denture base acrylic resin by titanium dioxide coating. J Oral Rehabil. 2009;36(12):902–8.

    Article  Google Scholar 

  40. Tsuji M, Ueda T, Sawaki K, Kawaguchi M, Sakurai K. Biocompatibility of a titanium dioxide-coating method for denture base acrylic resin. Gerodontology. 2016;33(4):539–44.

    Article  Google Scholar 

  41. Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM. Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolithographic complete denture manufacturing—the future in dental care for elderly edentulous patients? J Dent. 2017;59:68–77.

    Article  Google Scholar 

  42. Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent. 2016;115(6):760–7.

    Article  Google Scholar 

  43. Carlsson GE, Omar R. Trends in prosthodontics. Med Princ Pract. 2006;15(3):167–79.

    Article  Google Scholar 

  44. Joda T, Zarone F, Ferrari M. The complete digital workflow in fixed prosthodontics: a systematic review. BMC Oral Health. 2017;17(1):124.

    Article  Google Scholar 

  45. Beguma Z, Chhedat P. Rapid prototyping—when virtual meets reality. Int J Comput Dent. 2014;17(4):297–306.

    Google Scholar 

  46. Berman B. 3-D printing: the new industrial revolution. Bus Horiz. 2012;55(2):155–62.

    Article  Google Scholar 

  47. Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont. 2012;21(8):641–4.

    Article  Google Scholar 

  48. Ellakany P, Al-Harbi F, El Tantawi M, Mohsen C. Evaluation of the accuracy of digital and 3D-printed casts compared with conventional stone casts. J Prosthet Dent. 2020;127(3):438–44.

    Article  Google Scholar 

  49. Park ME, Shin SY. Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. J Prosthet Dent. 2018;119(5):861.e1–7.

    Article  Google Scholar 

  50. Hazeveld A, Huddleston Slater JJ, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofac Orthop. 2014;145:108–15.

    Article  Google Scholar 

  51. Liu Q, Leu M, Schmitt S. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol. 2005;29(3–4):317–35.

    Google Scholar 

  52. Keating AP, Knox J, Bibb R, Zhurov AI. A comparison of plaster, digital and reconstructed study model accuracy. J Orthod. 2008;35(3):191–201; discussion 175.

    Article  Google Scholar 

  53. Xie R, Li D, Chao S. An inexpensive stereolithography technology with high power UV-LED light. Rapid Prototyp J. 2011;17(6):441–50.

    Article  Google Scholar 

  54. Aly P, Mohsen C. Comparison of the accuracy of three-dimensional printed casts, digital, and conventional casts: an in vitro study. Eur J Dent. 2020;14(2):189–93.

    Article  Google Scholar 

  55. Papaspyridakos P, Chen YW, Alshawaf B, Kang K, Finkelman M, Chronopoulos V, et al. Digital workflow: in vitro accuracy of 3D printed casts generated from complete-arch digital implant scans. J Prosthet Dent. 2020;124(5):589–93.

    Article  Google Scholar 

  56. Murr L, Gaytan S, Ramirez D, Martinez E, Hernandez J, Amato K, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol. 2012;28(1):1–14.

    Article  Google Scholar 

  57. Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol. 2013;213:606–13.

    Article  Google Scholar 

  58. Chou WT, Chuang CC, Wang YB, Chiu HC. Comparison of the internal fit of metal crowns fabricated by traditional casting, computer numerical control milling, and three-dimensional printing. PLoS One. 2021;16(9):e0257158.

    Article  Google Scholar 

  59. Koutsoukis T, Zinelis S, Eliades G, Al-Wazzan K, Rifaiy MA, Al Jabbari YS. Selective laser melting technique of Co-Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont. 2015;24(4):303–12.

    Article  Google Scholar 

  60. Revilla-León M, Sadeghpour M, Özcan M. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry. J Prosthodont. 2020;29(7):579–93.

    Article  Google Scholar 

  61. Konieczny B, Szczesio-Wlodarczyk A, Sokolowski J, Bociong K. Challenges of Co-Cr alloy additive manufacturing methods in dentistry-the current state of knowledge (systematic review). Materials (Basel). 2020;13(16):3524.

    Article  Google Scholar 

  62. Qian B, Saeidi K, Kvetková L, Lofaj F, Xiao C, Shen Z. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting. Dent Mater. 2015;31(12):1435–44.

    Article  Google Scholar 

  63. Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010;3:249–59.

    Article  Google Scholar 

  64. Takaichi A, Suyalatu, Nakamoto T, Joko N, Nomura N, Tsutsumi Y, Migita S, et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater. 2013;21:67–76.

    Article  Google Scholar 

  65. Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater. 2014;30(4):e79–88.

    Article  Google Scholar 

  66. Hesse H, Özcan M. A review on current additive manufacturing technologies and materials used for fabrication of metal-ceramic fixed dental prosthesis. J Adhes Sci Technol. 2021; https://doi.org/10.1080/01694243.2021.1899699.

  67. Barucca G, Santecchia E, Majni G, Girardin E, Bassoli E, Denti L, et al. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering. Mater Sci Eng C Mater Biol Appl. 2015;48:263–9.

    Article  Google Scholar 

  68. Venkatesh KV, Nandini VV. Direct metal laser sintering: a digitised metal casting technology. J Indian Prosthodont Soc. 2013;13(4):389–92.

    Article  Google Scholar 

  69. Horn TJ, Harrysson OL. Overview of current additive manufacturing technologies and selected applications. Sci Prog. 2012;95(Pt 3):255–82.

    Article  Google Scholar 

  70. Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. Int J Dent. 2014;2014:783948.

    Article  Google Scholar 

  71. Zocca A, Colombo P, Gomes C, Günster J. Additive manufacturing of ceramics: issues, potentialities, and opportunities. J Am Ceram Soc. 2015;98(7):1983–2001.

    Article  Google Scholar 

  72. Zhao X, Evans JRG, Edirisinghe MJ, Song J. Direct ink-jet printing of vertical walls. J Am Ceram Soc. 2002;85(8):2113–5.

    Article  Google Scholar 

  73. Derby B. Additive manufacture of ceramics components by inkjet printing. Engineering. 2015;1(1):113–23.

    Article  Google Scholar 

  74. Bourell DL, Marcus HL, Barlow JW, Beaman JJ. Selective laser sintering of metals and ceramics. Int J Powder Metal. 1992;28:369–81.

    Google Scholar 

  75. Gonzalez JA, Mireles J, Lin Y, Wicker RB. Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int. 2016;42:10559–64.

    Article  Google Scholar 

  76. Schwentenwein M, Schneider P, Homa J. Lithography-based ceramic manufacturing: a novel technique for additive manufacturing of high-performance ceramics. Adv Sci Technol. 2014;88:60–4.

    Article  Google Scholar 

  77. Scheithauer U, Schwarzer E, Moritz T, Michaelis A. Additive manufacturing of ceramic heat exchanger: opportunities and limits of the lithography-based ceramic manufacturing (LCM). J Mater Eng Perform. 2017;27(1):14–20.

    Article  Google Scholar 

  78. Uçar Y, Aysan Meriç İ, Ekren O. Layered manufacturing of dental ceramics: fracture mechanics, microstructure, and elemental composition of lithography-sintered ceramic. J Prosthodont. 2019;28(1):e310–8.

    Article  Google Scholar 

  79. Hartmann M, Pfaffinger M, Stampfl J. The role of solvents in lithography-based ceramic manufacturing of lithium disilicate. Materials (Basel). 2021;14(4):1045.

    Article  Google Scholar 

  80. Dehurtevent M, Robberecht L, Hornez JC, Thuault A, Deveaux E, Béhin P. Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater. 2017;33(5):477–85.

    Article  Google Scholar 

  81. Baumgartner S, Gmeiner R, Schönherr JA, Stampfl J. Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications. Mater Sci Eng C Mater Biol Appl. 2020;116:111180.

    Article  Google Scholar 

  82. Schönherr JA, Baumgartner S, Hartmann M, Stampfl J. Stereolithographic additive manufacturing of high precision glass ceramic parts. Materials (Basel). 2020;13(7):1492.

    Article  Google Scholar 

  83. Li R, Wang Y, Hu M, Wang Y, Xv Y, Liu Y, Sun Y. Strength and adaptation of stereolithography-fabricated zirconia dental crowns: an in vitro study. Int J Prosthodont. 2019;32(5):439–43.

    Article  Google Scholar 

  84. Zandinejad A, Methani MM, Schneiderman ED, Revilla-León M, Bds DM. Fracture resistance of additively manufactured zirconia crowns when cemented to implant supported zirconia abutments: an in vitro study. J Prosthodont. 2019;28:893–7.

    Article  Google Scholar 

  85. Ioannidis A, Bomze D, Hämmerle CHF, Hüsler J, Birrer O, Mühlemann S. Load-bearing capacity of CAD/CAM 3D-printed zirconia, CAD/CAM milled zirconia, and heat-pressed lithium disilicate ultra-thin occlusal veneers on molars. Dent Mater. 2020;36:e109–e16.

    Article  Google Scholar 

  86. Wang W, Yu H, Liu Y, Jiang X, Gao B. Trueness analysis of zirconia crowns fabricated with 3 dimensional printing. J Prosthet Dent. 2019;121:285–91.

    Article  Google Scholar 

  87. Jang KJ, Kang JH, Fisher JG, Park SW. Effect of the volume fraction of zirconia suspensions on the microstructure and physical properties of products produced by additive manufacturing. Dent Mater. 2019;35:e97–106.

    Article  Google Scholar 

  88. Madhav V, Digholkar S, Palaskar J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc. 2016;16(4):328–34.

    Article  Google Scholar 

  89. Joo HS, Park SW, Yun KD, Lim HP. Complete-mouth rehabilitation using a 3D printing technique and the CAD/CAM double scanning method: a clinical report. J Prosthet Dent. 2016;116(1):3–7.

    Article  Google Scholar 

  90. Dikova TD, Dzhendov DA, Ivanov D, Bliznakova K. Dimensional accuracy and surface roughness of polymeric dental bridges produced by different 3D printing processes. Arch Mater Sci Eng. 2018;2(94):65–75.

    Article  Google Scholar 

  91. Lee WS, Lee DH, Lee KB. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system. J Adv Prosthodont. 2017;9(4):265–70.

    Article  Google Scholar 

  92. Peng CC, Chung KH, Yau HT, Ramos V Jr. Assessment of the internal fit and marginal integrity of interim crowns made by different manufacturing methods. J Prosthet Dent. 2020;123(3):514–22.

    Article  Google Scholar 

  93. Peng CC, Chung KH, Ramos V Jr. Assessment of the adaptation of interim crowns using different measurement techniques. J Prosthodont. 2020;29(1):87–93.

    Article  Google Scholar 

  94. Katreva I, Dikova T, Tonchev T. 3D printing – an alternative of conventional crown fabrication: a case report. J IMAB Annu Proc (Sci Pap). 2018;24(2):2048–54.

    Google Scholar 

  95. Tahmaseb A, Wismeijer D, Coucke W, Derksen W. Computer technology applications in surgical implant dentistry: a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):25–42.

    Article  Google Scholar 

  96. Cristache CM, Gurbanescu S. Accuracy evaluation of a stereolithographic surgical template for dental implant insertion using 3D superimposition protocol. Int J Dent. 2017;2017:4292081.

    Article  Google Scholar 

  97. Chen L, Lin WS, Polido WD, Eckert GJ, Morton D. Accuracy, reproducibility, and dimensional stability of additively manufactured surgical templates. J Prosthet Dent. 2019;122(3):309–14.

    Article  Google Scholar 

  98. Kernen F, Kramer J, Wanner L, Wismeijer D, Nelson K, Flügge T. A review of virtual planning software for guided implant surgery - data import and visualization, drill guide design and manufacturing. BMC Oral Health. 2020;20(1):251.

    Article  Google Scholar 

  99. Elkomy MM, Khamis MM, El-Sharkawy AM. Clinical and radiographic evaluation of implants placed with fully guided versus partially guided tissue-supported surgical guides: a split-mouth clinical study. J Prosthet Dent. 2021;126(1):58–66.

    Article  Google Scholar 

  100. Oh KC, Shim JS, Park JM. In vitro comparison between metal sleeve-free and metal sleeve-incorporated 3D-printed computer-assisted implant surgical guides. Materials (Basel). 2021;14(3):615.

    Article  Google Scholar 

  101. Oh KC, Park JM, Shim JS, Kim JH, Kim JE, Kim JH. Assessment of metal sleeve-free 3D-printed implant surgical guides. Dent Mater. 2019;35(3):468–76.

    Article  Google Scholar 

  102. Sarhan MM, Khamis MM, El-Sharkawy AM. Evaluation of the accuracy of implant placement by using fully guided versus partially guided tissue-supported surgical guides with cylindrical versus C-shaped guiding holes: a split-mouth clinical study. J Prosthet Dent. 2021;125(4):620–7.

    Article  Google Scholar 

  103. Pieralli S, Spies BC, Hromadnik V, Nicic R, Beuer F, Wesemann C. How accurate is oral implant installation using surgical guides printed from a degradable and steam-sterilized biopolymer? J Clin Med. 2020;9(8):2322.

    Article  Google Scholar 

  104. Turbush SK, Turkyilmaz I. Accuracy of three different types of stereolithographic surgical guide in implant placement: an in vitro study. J Prosthet Dent. 2012;108(3):181–8.

    Article  Google Scholar 

  105. Bencharit S, Staffen A, Yeung M, Whitley D III, Laskin DM, Deeb GR. In vivo tooth-supported implant surgical guides fabricated with desktop stereolithographic printers: fully guided surgery is more accurate than partially guided surgery. J Oral Maxillofac Surg. 2018;76(7):1431–9.

    Article  Google Scholar 

  106. Bell CK, Sahl EF, Kim YJ, Rice DD. Accuracy of implants placed with surgical guides: thermoplastic versus 3D printed. Int J Periodontics Restorative Dent. 2018;38(1):113–9.

    Article  Google Scholar 

  107. D’haese R, Vrombaut T, Hommez G, De Bruyn H, Vandeweghe S. Accuracy of guided implant surgery in the edentulous jaw using desktop 3D-printed mucosal supported guides. J Clin Med. 2021;10(3):391.

    Article  Google Scholar 

  108. Kim T, Lee S, Kim GB, Hong D, Kwon J, Park JW, et al. Accuracy of a simplified 3D-printed implant surgical guide. J Prosthet Dent. 2020;124(2):195–201.e2.

    Article  Google Scholar 

  109. Herschdorfer L, Negreiros WM, Gallucci GO, Hamilton A. Comparison of the accuracy of implants placed with CAD-CAM surgical templates manufactured with various 3D printers: an in vitro study. J Prosthet Dent. 2021;125(6):905–10.

    Article  Google Scholar 

  110. Li H, Wang T, Sun J, Yu Z. The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties. Rapid Prototyp J. 2018;24(1):80–92.

    Article  Google Scholar 

  111. Sittikornpaiboon P, Arunjaroensuk S, Kaboosaya B, Subbalekha K, Mattheos N, Pimkhaokham A. Comparison of the accuracy of implant placement using different drilling systems for static computer-assisted implant surgery: a simulation-based experimental study. Clin Implant Dent Relat Res. 2021;23(4):635–43.

    Article  Google Scholar 

  112. Shah NP, Khanna A, Pai AR, Sheth VH, Raut SR. An evaluation of virtually planned and 3D-printed stereolithographic surgical guides from CBCT and digital scans: an in vitro study. J Prosthet Dent. 2021; https://doi.org/10.1016/j.prosdent.2020.12.035.

  113. Henprasert P, Dawson DV, El-Kerdani T, Song X, Couso-Queiruga E, Holloway JA. Comparison of the accuracy of implant position using surgical guides fabricated by additive and subtractive techniques. J Prosthodont. 2020;29(6):534–41.

    Article  Google Scholar 

  114. Sharma N, Cao S, Msallem B, Kunz C, Brantner P, Honigmann P, et al. Effects of steam sterilization on 3D printed biocompatible resin materials for surgical guides-an accuracy assessment study. J Clin Med. 2020;9(5):1506.

    Article  Google Scholar 

  115. Etemad-Shahidi Y, Qallandar OB, Evenden J, Alifui-Segbaya F, Ahmed KE. Accuracy of 3-dimensionally printed full-arch dental models: a systematic review. J Clin Med. 2020;9(10):3357.

    Article  Google Scholar 

  116. Wan Hassan WN, Yusoff Y, Mardi NA. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding. Am J Orthod Dentofac Orthop. 2017;151(1):209–18.

    Article  Google Scholar 

  117. Jin SJ, Kim DY, Kim JH, Kim WC. Accuracy of dental replica models using photopolymer materials in additive manufacturing: in vitro three-dimensional evaluation. J Prosthodont. 2019;28(2):e557–62.

    Article  Google Scholar 

  118. Rungrojwittayakul O, Kan JY, Shiozaki K, Swamidass RS, Goodacre BJ, Goodacre CJ, et al. Accuracy of 3D printed models created by two technologies of printers with different designs of model base. J Prosthodont. 2020;29(2):124–8.

    Article  Google Scholar 

  119. Joda T, Matthisson L, Zitzmann NU. Impact of aging on the accuracy of 3D-printed dental models: an in vitro investigation. J Clin Med. 2020;9(5):1436.

    Article  Google Scholar 

  120. Emir F, Ceylan G, Ayyildiz S. In vitro accuracies of 3D printed models manufactured by two different printing technologies. Eur Oral Res. 2021;55(2):80–5.

    Google Scholar 

  121. Nestler N, Wesemann C, Spies BC, Beuer F, Bumann A. Dimensional accuracy of extrusion- and photopolymerization-based 3D printers: in vitro study comparing printed casts. J Prosthet Dent. 2021;125(1):103–10.

    Article  Google Scholar 

  122. Camardella LT, de Vasconcellos Vilella O, Breuning H. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am J Orthod Dentofac Orthop. 2017;151(6):1178–87.

    Article  Google Scholar 

  123. Kalman L. 3D printing of a novel dental implant abutment. J Dent Res Dent Clin Dent Prospect. 2018;12(4):299–303.

    Article  Google Scholar 

  124. Magne P, Silva M, Oderich E, Boff LL, Enciso R. Damping behavior of implant-supported restorations. Clin Oral Implants Res. 2013;24(2):143–8.

    Article  Google Scholar 

  125. Kotick PG, Blumenkopf B. Abutment selection for implant restorations. Inside Dentistry. 2011;7(7):14–6.

    Google Scholar 

  126. Gonzalo E, Vizoso B, Lopez-Suarez C, Diaz P, Pelaez J, Suarez MJ. Evaluation of milled titanium versus laser sintered Co-Cr abutments on the marginal misfit in internal implant-abutment connection. Materials (Basel). 2020;13(21):4873.

    Article  Google Scholar 

  127. Hartman MJ. A workflow to design and fabricate a customized healing abutment from a dynamic navigation virtual treatment plan. Compend Contin Educ Dent. 2021;42(2):86–92.

    Google Scholar 

  128. Kalman L. In vitro assessment of a novel additive manufactured titanium implant abutment. J Clin Exp Dent. 2021;13(2):e99–e103.

    Article  Google Scholar 

  129. Joda T, Bürki A, Bethge S, Brägger U, Zysset P. Stiffness, strength, and failure modes of implant-supported monolithic lithium disilicate crowns: influence of titanium and zirconia abutments. Int J Oral Maxillofac Implants. 2015;30(6):1272–9.

    Article  Google Scholar 

  130. Akçin ET, Güncü MB, Aktaş G, Aslan Y. Effect of manufacturing techniques on the marginal and internal fit of cobalt-chromium implant-supported multiunit frameworks. J Prosthet Dent. 2018;120(5):715–20.

    Article  Google Scholar 

  131. Alonso-Pérez R, Bartolomé JF, Ferreiroa A, Salido MP, Pradíes G. Evaluation of the mechanical behavior and marginal accuracy of stock and laser-sintered implant abutments. Int J Prosthodont. 2017;30(2):136–8.

    Article  Google Scholar 

  132. Fernández M, Delgado L, Molmeneu M, García D, Rodríguez D. Analysis of the misfit of dental implant-supported prostheses made with three manufacturing processes. J Prosthet Dent. 2014;111(2):116–23.

    Article  Google Scholar 

  133. Molinero-Mourelle P, Cascos-Sanchez R, Yilmaz B, Lam WYH, Pow EHN, Del Río Highsmith J, Gómez-Polo M. Effect of fabrication technique on the microgap of CAD/CAM cobalt-chrome and zirconia abutments on a conical connection implant: an in vitro study. Materials (Basel). 2021;14(9):2348.

    Article  Google Scholar 

  134. Hjalmarsson L, Örtorp A, Smedberg JI, Jemt T. Precision of fit to implants: a comparison of Cresco™ and Procera® implant bridge frameworks. Clin Implant Dent Relat Res. 2010;12(4):271–80.

    Article  Google Scholar 

  135. Abduo J, Lyons K, Bennani V, Waddell N, Swain M. Fit of screw-retained fixed implant frameworks fabricated by different methods: a systematic review. Int J Prosthodont. 2011;24(3):207–20.

    Google Scholar 

  136. Revilla-León M, Sánchez-Rubio JL, Pérez-López J, Rubenstein J, Özcan M. Discrepancy at the implant abutment-prosthesis interface of complete-arch cobalt-chromium implant frameworks fabricated by additive and subtractive technologies before and after ceramic veneering. J Prosthet Dent. 2021;125(5):795–803.

    Article  Google Scholar 

  137. Svanborg P, Eliasson A, Stenport V. Additively manufactured titanium and cobalt-chromium implant frameworks: fit and effect of ceramic veneering. Int J Oral Maxillofac Implants. 2018;33(3):590–6.

    Article  Google Scholar 

  138. Revilla-León M, Ceballos L, Martínez-Klemm I, Özcan M. Discrepancy of complete-arch titanium frameworks manufactured using selective laser melting and electron beam melting additive manufacturing technologies. J Prosthet Dent. 2018;120(6):942–7.

    Article  Google Scholar 

  139. Zanjanijam AR, Major I, Lyons JG, Lafont U, Devine DM. Fused filament fabrication of PEEK: a review of process-structure-property relationships. Polymers (Basel). 2020;12(8):1665.

    Article  Google Scholar 

  140. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60(1):12–9.

    Article  Google Scholar 

  141. Han X, Sharma N, Xu Z, Scheideler L, Geis-Gerstorfer J, Rupp F, et al. An in vitro study of osteoblast response on fused-filament fabrication 3D printed PEEK for dental and cranio-maxillofacial implants. J Clin Med. 2019;8(6):771.

    Article  Google Scholar 

  142. Mangano C, Bianchi A, Mangano FG, Dana J, Colombo M, Solop I, et al. Custom-made 3D printed subperiosteal titanium implants for the prosthetic restoration of the atrophic posterior mandible of elderly patients: a case series. 3D Print Med. 2020;6(1):1.

    Article  Google Scholar 

  143. Surovas A. A digital workflow for modeling of custom dental implants. 3D Print Med. 2019;5(1):9.

    Article  Google Scholar 

  144. Honigmann P, Sharma N, Okolo B, Popp U, Msallem B, Thieringer FM. Patient-specific surgical implants made of 3D printed PEEK: material, technology, and scope of surgical application. Biomed Res Int. 2018;2018:4520636.

    Article  Google Scholar 

  145. Mounir M, Atef M, Abou-Elfetouh A, Hakam MM. Titanium and polyether ether ketone (PEEK) patient-specific sub-periosteal implants: two novel approaches for rehabilitation of the severely atrophic anterior maxillary ridge. Int J Oral Maxillofac Surg. 2018;47(5):658–64.

    Article  Google Scholar 

  146. Jamayet NB, Abdullah YJ, Rajion ZA, Husein A, Alam MK. New approach to 3D printing of facial prostheses using combination of open source software and conventional techniques: a case report. Bull Tokyo Dent Coll. 2017;58(2):117–24.

    Article  Google Scholar 

  147. Mussi E, Furferi R, Volpe Y, Facchini F, McGreevy KS, Uccheddu F. Ear reconstruction simulation: from handcrafting to 3D printing. Bioengineering (Basel). 2019;6(1):14.

    Article  Google Scholar 

  148. Unkovskiy A, Brom J, Huettig F, Keutel C. Auricular prostheses produced by means of conventional and digital workflows: a clinical report on esthetic outcomes. Int J Prosthodont. 2018;31(31):63–6.

    Article  Google Scholar 

  149. Yadav S, Narayan AI, Choudhry A, Balakrishnan D. CAD/CAM-assisted auricular prosthesis fabrication for a quick, precise, and more retentive outcome: a clinical report. J Prosthodont. 2017;26:616–21.

    Article  Google Scholar 

  150. Memon AR, Wang E, Hu J, Egger J, Chen X. A review on computer-aided design and manufacturing of patient-specific maxillofacial implants. Expert Rev Med Devices. 2020;17(4):345–56.

    Article  Google Scholar 

  151. Unkovskiy A, Spintzyk S, Axmann D, Engel EM, Weber H, Huettig F. Additive manufacturing: a comparative analysis of dimensional accuracy and skin texture reproduction of auricular prostheses replicas. J Prosthodont. 2019;28(2):e460–8.

    Article  Google Scholar 

  152. Jindal SK, Sherriff M, Waters MG, Coward TJ. Development of a 3D printable maxillofacial silicone: Part I. Optimization of polydimethylsiloxane chains and cross-linker concentration. J Prosthet Dent. 2016;116(4):617–22.

    Article  Google Scholar 

  153. Jindal SK, Sherriff M, Waters MG, Smay JE, Coward TJ. Development of a 3D printable maxillofacial silicone: Part II. Optimization of moderator and thixotropic agent. J Prosthet Dent. 2018;119(2):299–304.

    Article  Google Scholar 

  154. Farook TH, Jamayet NB, Abdullah JY, Rajion ZA, Alam MK. A systematic review of the computerized tools and digital techniques applied to fabricate nasal, auricular, orbital and ocular prostheses for facial defect rehabilitation. J Stomatol Oral Maxillofac Surg. 2020;121(3):268–77.

    Article  Google Scholar 

  155. Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow. J Prosthet Dent. 2018;120(2):303–8.

    Article  Google Scholar 

  156. ACEO® - Unique Drop on Demand Technology with 70 Years of Silicone Knowhow [Internet]. ACEO. 2021 [cited 26 October 2021]. Available from: https://www.aceo3d.com/technology.

  157. Domingue D, Sinada N, White JR. Digital surgical planning and placement of osseointegrated implants to retain an auricular prosthesis using implant software with cone-beam computed tomography and 3D-printed surgical guides: a case report. Clin Case Rep. 2020;9(1):203–9.

    Article  Google Scholar 

  158. Domingue D, Glenn NC, Vest A, White JR. Osseointegrated implant-retained auricular prosthesis constructed using cone-beam computed tomography and a prosthetically driven digital workflow: a case report. Clin Case Rep. 2020;9(1):37–45.

    Article  Google Scholar 

  159. Kadowaki M, Kubo T, Fujikawa M, Tashima H, Nagayama H, Ishihara O, et al. A two-tiered structure device based on stereolithography for residual mandible repositioning in mandibular reconstruction with fibular flap. Microsurgery. 2017;37(6):509–15.

    Article  Google Scholar 

  160. Yuan X, Xuan M, Tian W, Long J. Application of digital surgical guides in mandibular resection and reconstruction with fibula flaps. Int J Oral Maxillofac Surg. 2016;45(11):1406–9.

    Article  Google Scholar 

  161. Patel SY, Kim DD, Ghali GE. Maxillofacial reconstruction using vascularized fibula free flaps and endosseous implants. Oral Maxillofac Surg Clin North Am. 2019;31(2):259–84.

    Article  Google Scholar 

  162. Rohner D, Bucher P, Hammer B. Prefabricated fibular flaps for reconstruction of defects of the maxillofacial skeleton: planning, technique, and long-term experience. Int J Oral Maxillofac Implants. 2013;28(5):e221–9.

    Article  Google Scholar 

  163. Beh YH, Farook TH, Jamayet NB, Dudley J, Rashid F, Barman A, et al. Evaluation of the differences between conventional and digitally developed models used for prosthetic rehabilitation in a case of untreated palatal cleft. Cleft Palate Craniofac J. 2021;58(3):386–90.

    Article  Google Scholar 

  164. Murat S, Gürbüz A, Kamburoğlu K. Fabrication of obturator prosthesis by fusing CBCT and digital impression data. Int J Comput Dent. 2018;21(4):335–44.

    Google Scholar 

  165. Rodney J, Chicchon I. Digital design and fabrication of surgical obturators based only on preoperative computed tomography data. Int J Prosthodont. 2017;30(2):111–2.

    Article  Google Scholar 

  166. Tasopoulos T, Chatziemmanouil D, Karaiskou G, Kouveliotis G, Wang J, Zoidis P. Fabrication of a 3D-printed interim obturator prosthesis: a contemporary approach. J Prosthet Dent. 2019;121(6):960–3.

    Article  Google Scholar 

  167. Tasopoulos T, Chatziemmanouil D, Kouveliotis G, Karaiskou G, Wang J, Zoidis P. PEEK maxillary obturator prosthesis fabrication using intraoral scanning, 3D printing, and CAD/CAM. Int J Prosthodont. 2020;33(3):333–40.

    Article  Google Scholar 

  168. Xepapadeas AB, Weise C, Frank K, Spintzyk S, Poets CF, Wiechers C, et al. Technical note on introducing a digital workflow for newborns with craniofacial anomalies based on intraoral scans - Part II: 3D printed Tübingen palatal plate prototype for newborns with Robin sequence. BMC Oral Health. 2020;20(1):171.

    Article  Google Scholar 

  169. Rooney MK, Rosenberg DM, Braunstein S, Cunha A, Damato AL, Ehler E, et al. Three-dimensional printing in radiation oncology: a systematic review of the literature. J Appl Clin Med Phys. 2020;21(8):15–26.

    Article  Google Scholar 

  170. Subashi E, Jacobs C, Hood R, Kirsch DG, Craciunescu O. A design process for a 3D printed patient-specific applicator for HDR brachytherapy of the orbit. 3D Print Med. 2020;6(1):15.

    Article  Google Scholar 

  171. Zhao Y, Moran K, Yewondwossen M, Allan J, Clarke S, Rajaraman M, et al. Clinical applications of 3-dimensional printing in radiation therapy. Med Dosim. 2017;42(2):150–5.

    Article  Google Scholar 

  172. Lancellotta V, Pagano S, Tagliaferri L, Piergentini M, Ricci A, Montecchiani S, et al. Individual 3-dimensional printed mold for treating hard palate carcinoma with brachytherapy: a clinical report. J Prosthet Dent. 2019;121(4):690–3.

    Article  Google Scholar 

  173. Craft DF, Kry SF, Balter P, Salehpour M, Woodward W, Howell RM. Material matters: analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med Phys. 2018;45(4):1614–21.

    Article  Google Scholar 

  174. Arnold C, Hey J, Schweyen R, Setz JM. Accuracy of CAD-CAM-fabricated removable partial dentures. J Prosthet Dent. 2018;119(4):586–92.

    Article  Google Scholar 

  175. Suzuki Y, Shimizu S, Waki T, Shimpo H, Ohkubo C. Laboratory efficiency of additive manufacturing for removable denture frameworks: a literature-based review. Dent Mater J. 2021;40(2):265–71.

    Article  Google Scholar 

  176. Al Mortadi N, Alzoubi KH, Williams R. A scoping review on the accuracy of fit of removable partial dentures in a developing digital context. Clin Cosmet Investig Dent. 2020;12:551–62.

    Article  Google Scholar 

  177. Williams RJ, Bibb R, Eggbeer D, Collis J. Use of CAD/CAM technology to fabricate a removable partial denture framework. J Prosthet Dent. 2006;96(2):96–9.

    Article  Google Scholar 

  178. Bibb R, Eggbeer D, Williams R. Rapid manufacture of removable partial denture frameworks. Rapid Prototyp J. 2006;12(2):95–9.

    Article  Google Scholar 

  179. Soltanzadeh P, Suprono MS, Kattadiyil MT, Goodacre C, Gregorius W. An in vitro investigation of accuracy and fit of conventional and CAD/CAM removable partial denture frameworks. J Prosthodont. 2019;28(5):547–55.

    Article  Google Scholar 

  180. Eggbeer D, Bibb R, Williams R. The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks. Proc Inst Mech Eng H. 2005;219:195–202.

    Article  Google Scholar 

  181. Pordeus MD, Santiago Junior JF, Venante HS, Bringel da Costa RM, Chappuis Chocano AP, Porto VC. Computer-aided technology for fabricating removable partial denture frameworks: a systematic review and meta-analysis. J Prosthet Dent. 2021; https://doi.org/10.1016/j.prosdent.2020.06.006.

  182. Wu J, Zhang C, Gao B, Wang X, Zhao X. A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyp J. 2012;18:318–23.

    Article  Google Scholar 

  183. Tasaka A, Okano H, Shimizu T, Kato Y, Higuchi S, Yamashita S. Influence of reinforcement bar on accuracy of removable partial denture framework fabricated by casting with a 3D-printed pattern and selective laser sintering. J Prosthodont Res. 2021;65(2):213–8.

    Article  Google Scholar 

  184. Ali M, Nairn RI, Sherriff M, Waters NE. The distortion of cast cobalt-chromium alloy partial denture frameworks fitted to a working cast. J Prosthet Dent. 1997;78(4):419–24.

    Article  Google Scholar 

  185. Fenlon MR, Juszczyk AS, Hughes RJ, Walter JD, Sherriff M. Accuracy of fit of cobalt-chromium removable partial denture frameworks on master casts. Eur J Prosthodont Restor Dent. 1993;1(3):127–30.

    Google Scholar 

  186. Augthun M, Zyfuss M, Spiekermann H. The influence of spruing technique on the development of tension in a cast partial denture framework. Int J Prosthodont. 1994;7(1):72–6.

    Google Scholar 

  187. Brudvik JS, Reimers D. The tooth-removable partial denture interface. J Prosthet Dent. 1992;68(6):924–7.

    Article  Google Scholar 

  188. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent. 2002;87(4):351–63.

    Article  Google Scholar 

  189. Arafa KAO. Assessment of the fit of removable partial denture fabricated by computer-aided designing/computer aided manufacturing technology. Saudi Med J. 2018;39:17–22.

    Article  Google Scholar 

  190. Lang LA, Tulunoglu I. A critically appraised topic review of computer-aided design/computer-aided machining of removable partial denture frameworks. Dent Clin N Am. 2014;58(1):247–55.

    Article  Google Scholar 

  191. Moldovan O, Rudolph H, Luthardt RG. No clear evidence on the clinical performance of different removable prosthetic options in partially edentulous patients. Clin Oral Investig. 2016;20:1435–47.

    Article  Google Scholar 

  192. Frank R, Brudvik J, Leroux B, Milgrom P, Hawkins N. Relationship between the standards of removable partial denture construction, clinical acceptability, and patient satisfaction. J Prosthet Dent. 2000;83(5):521–7.

    Article  Google Scholar 

  193. Mamoun J. The path of placement of a removable partial denture: a microscope based approach to survey and design. J Adv Prosthodont. 2015;7(1):76–84.

    Article  Google Scholar 

  194. Dunham D, Brudvik J, Morris W, Plummer K, Cameron S. A clinical investigation of the fit of removable partial dental prosthesis clasp assemblies. J Prosthet Dent. 2006;95(4):323–6.

    Article  Google Scholar 

  195. Ye H, Ning J, Li M, Niu L, Yang J, Sun Y, et al. Preliminary clinical application of removable partial denture frameworks fabricated using computer-aided design and rapid prototyping techniques. Int J Prosthodont. 2017;30(4):348–53.

    Article  Google Scholar 

  196. Tasaka A, Shimizu T, Kato Y, Okano H, Ida Y, Higuchi S, et al. Accuracy of removable partial denture framework fabricated by casting with a 3D printed pattern and selective laser sintering. J Prosthodont Res. 2020;64(2):224–30.

    Article  Google Scholar 

  197. Chen J, Ahmad R, Suenaga H, Li W, Sasaki K, Swain M, et al. Shape optimization for additive manufacturing of removable partial dentures—a new paradigm for prosthetic CAD/CAM. PLoS One. 2015;10(7):e0132552.

    Article  Google Scholar 

  198. Lee J-W, Park J-M, Park E-J, Heo S-J, Koak J-Y, Kim S-K. Accuracy of a digital removable partial denture fabricated by casting a rapid prototyped pattern: a clinical study. J Prosthet Dent. 2017;1:118.

    Google Scholar 

  199. Keltjens HM, Mulder J, Kayser AF, Creugers NH. Fit of direct retainers in removable partial dentures after 8 years of use. J Oral Rehabil. 1997;24:138–42.

    Article  Google Scholar 

  200. Tregerman I, Renne W, Kelly A, Wilson D. Evaluation of removable partial denture frameworks fabricated using 3 different techniques. J Prosthet Dent. 2019;122:390–5.

    Article  Google Scholar 

  201. Takahashi K, Torii M, Nakata T, Kawamura N, Shimpo H, Ohkubo C. Fitness accuracy and retentive forces of additive manufactured titanium clasp. J Prosthodont Res. 2020;13:1883–958.

    Google Scholar 

  202. Schweiger J, Güth JF, Erdelt KJ, Edelhoff D, Schubert O. Internal porosities, retentive force, and survival of cobalt-chromium alloy clasps fabricated by selective laser-sintering. J Prosthodont Res. 2020;64(2):210–6.

    Article  Google Scholar 

  203. Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32(1):54–64.

    Article  Google Scholar 

  204. Koike M, Greer P, Owen K, Lilly G, Murr LE, Gaytan SM, et al. Evaluation of titanium alloys fabricated using rapid prototyping technologies-electron beam melting and laser beam melting. Materials (Basel). 2011;4(10):1776–92.

    Article  Google Scholar 

  205. Almufleh B, Emami E, Alageel O, de Melo F, Seng F, Caron E. Patient satisfaction with laser-sintered removable partial dentures: a crossover pilot clinical trial. J Prosthet Dent. 2018;119:560–7.

    Article  Google Scholar 

  206. Awad MA, Feine JS. Measuring patient satisfaction with mandibular prostheses. Community Dent Oral Epidemiol. 1998;26(6):400–5.

    Article  Google Scholar 

  207. Herpel C, Schwindling FS, Held T, Christ L, Lang K, Schwindling M, et al. Individualized 3D-printed tissue retraction devices for head and neck radiotherapy. Front Oncol. 2021;11:628743.

    Article  Google Scholar 

  208. Zaid M, Bajaj N, Burrows H, Mathew R, Dai A, Wilke CT, et al. Creating customized oral stents for head and neck radiotherapy using 3D scanning and printing. Radiat Oncol. 2019;14:148.

    Article  Google Scholar 

  209. Zaid M, Koay EJ, Bajaj N, Mathew R, Xiao L, Agrawal A, et al. A prospective parallel design study testing non-inferiority of customized oral stents made using 3D printing or manually fabricated methods. Oral Oncol. 2020;106:104665.

    Article  Google Scholar 

  210. Şenayli A, Çankaya G, Öztorun CI, Oflaz H, Şenel E. Clinical trials of 3D printing splints to avoid contracture development in burned children. Turk J Med Sci. 2021;51(5):2543–53.

    Article  Google Scholar 

  211. Dedem P, Türp JC. Digital Michigan splint - from intraoral scanning to plasterless manufacturing. Int J Comput Dent. 2016;19:63–76.

    Google Scholar 

  212. Schweiger J, Edelhoff D, Güth JF. 3D printing in digital prosthetic dentistry: an overview of recent developments in additive manufacturing. J Clin Med. 2021;10:2010.

    Article  Google Scholar 

  213. Ahmed MK, Ahsanuddin S, Retrouvey JM, Koka KS, Qureshi H, Bui AH, et al. Fabrication of nasoalveolar molding devices for the treatment of cleft lip and palate, using stereolithography additive manufacturing processes and computer-aided design manipulation software. J Craniofac Surg. 2019;30:2604–8.

    Article  Google Scholar 

  214. Revilla-León M, Besné-Torre A, Sánchez-Rubio JL, Fábrega JJ, Özcan M. Digital tools and 3D printing technologies integrated into the workflow of restorative treatment: a clinical report. J Prosthet Dent. 2019;121(1):3–8.

    Article  Google Scholar 

  215. Torabi K, Farjood E, Hamedani S. Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J Dent (Shiraz). 2015;16(1):1–9.

    Google Scholar 

  216. Oberoi G, Nitsch S, Edelmayer M, JanjiĆ K, Müller AS, Agis H. 3D printing-encompassing the facets of dentistry. Front Bioeng Biotechnol. 2018;6:172.

    Google Scholar 

  217. Dawood A, Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219:521–9.

    Article  Google Scholar 

  218. Wedekind L, Güth JF, Schweiger J, Kollmuss M, Reichl FX, Edelhoff D, et al. Elution behavior of a 3D-printed, milled and conventional resin-based occlusal splint material. Dent Mater. 2021;37:701–10.

    Article  Google Scholar 

  219. Vasques MT, Mori M, Laganá DC. Three-dimensional printing of occlusal devices for temporomandibular disorders by using a free CAD software program: a technical report. J Prosthet Dent. 2020;123:232–5.

    Article  Google Scholar 

  220. Lutz AM, Hampe R, Roos M, Lümkemann N, Eichberger M, Stawarczyk B. Fracture resistance and 2-body wear of 3-dimensional-printed occlusal devices. J Prosthet Dent. 2019;121(1):166–72.

    Article  Google Scholar 

  221. Berli C, Thieringer FM, Sharma N, Müller JA, Dedem P, Fischer J, et al. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J Prosthet Dent. 2020;124:780–6.

    Article  Google Scholar 

  222. Marcel R, Reinhard H, Andreas K. Accuracy of CAD/CAM-fabricated bite splints: milling vs 3D printing. Clin Oral Investig. 2020;24:4607–15.

    Article  Google Scholar 

  223. Reyes-Sevilla M, Kuijs RH, Werner A, Kleverlaan CJ, Lobbezoo F. Comparison of wear between occlusal splint materials and resin composite materials. J Oral Rehabil. 2018;45(7):539–44.

    Article  Google Scholar 

  224. Prpic V, Slacanin I, Schauperl Z, Catic A, Dulcic N, Cimic S. A study of the flexural strength and surface hardness of different materials and technologies for occlusal device fabrication. J Prosthet Dent. 2019;121:955–9.

    Article  Google Scholar 

  225. Unkovskiy A, Bui PH, Schille C, Geis-Gerstorfer J, Huettig F, Spintzyk S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent Mater. 2018;34:e324–33.

    Article  Google Scholar 

  226. Väyrynen VO, Tanner J, Vallittu PK. The anisotropicity of the flexural properties of an occlusal device material processed by stereolithography. J Prosthet Dent. 2016;116:811–7.

    Article  Google Scholar 

  227. Grymak A, Aarts JM, Ma S, Waddell JN, Choi JJE. Comparison of hardness and polishability of various occlusal splint materials. J Mech Behav Biomed Mater. 2021;115:104270.

    Article  Google Scholar 

  228. Xu Y, Xepapadeas AB, Koos B, Geis-Gerstorfer J, Li P, Spintzyk S. Effect of post-rinsing time on the mechanical strength and cytotoxicity of a 3D printed orthodontic splint material. Dent Mater. 2021;37:e314–27.

    Article  Google Scholar 

  229. Reymus M, Stawarczyk B. Influence of different postpolymerization strategies and artificial aging on hardness of 3D-printed resin materials: an in vitro study. Int J Prosthodont. 2020;33:634–40.

    Article  Google Scholar 

  230. Perea-Lowery L, Gibreel M, Vallittu PK, Lassila L. Evaluation of the mechanical properties and degree of conversion of 3D printed splint material. J Mech Behav Biomed Mater. 2021;115:104254.

    Article  Google Scholar 

  231. Schubert A, Bürgers R, Baum F, Kurbad O, Wassmann T. Influence of the manufacturing method on the adhesion of Candida albicans and Streptococcus mutans to oral splint resins. Polymers (Basel). 2021;13(10):1534.

    Article  Google Scholar 

Download references

Acknowledgements are appropiate

  1. 1.

    Precision Ceramic Artz, Mohali, Mr. Sudhir Bansal, Mr. Manish Gupta.

  2. 2.

    INNOVATIVE 3D PRINTING SOLUTIONS LLP, Mr. Mitesh Patil, Mr. Ganesh Padwal, Mr. Kalpesh Jadhav, Mr. Mohd. Anwar Khan, Mr. Mohd Rizwan Khan for their technical assistance and data collection in relation to Fixed dental prosthesis section.

  3. 3.

    Dr. Amit Sharma and Dr. Arun Kumar: Senior resident, Division of Prosthodontics, CDER, AIIMS, New Delhi.

  4. 4.

    Dr. Majed Altoman: Graduate student, School of Dentistry, Loma Linda University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nanda, A., Iyer, S., Kattadiyil, M.T., Jain, V., Kaur, H., Koli, D. (2022). Contemporary Applications of 3D Printing in Prosthodontics. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics