Skip to main content

Applications of 3D Printing in Periodontal Tissue Regeneration

  • Chapter
  • First Online:
3D Printing in Oral Health Science
  • 650 Accesses

Abstract

The use of 3D printing for periodontal regeneration is still in its infancy. Thorough knowledge of the biological mechanisms and 3D printing systems and materials is necessary to effectively translate this technology into treatment. This systematic review summarizes evidence from published animal and human studies that have assessed the application of 3D printing for periodontal regeneration. The literature search was conducted in PubMed database from inception till April 2021 for animal and human studies evaluating 3D printing for periodontal regeneration. The SYRCLE’s risk of bias tool was used to assess the risk of bias in the included animal studies. A total of 164 articles were obtained using the above search strategy, out of which 12 articles (11 animal studies and 1 human study) fulfilled the inclusion criteria and were, thus, included in the present systematic review. In all, 233 animal subjects were used in which periodontal bony defects were ectopic defects followed by orthotopic defects. Fused deposition modeling was the most used 3D-printing technology followed by microextrusion. About 11 animal studies reported favorable clinical outcomes and limited serious complications. Most animal studies had a low risk of bias in terms of maintaining homogeneity in baseline characteristics and the selective reporting parameter. The only human study had a large periodontal osseous defect treated with a 3D-printed (selective laser sintering) polymer scaffold with good short-term but poor long-term results. Nonetheless, these studies provide important data for the efficacy of 3D-printing technology and lay the foundation for further innovation and investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nazir M, Al-Ansari A, Al-Khalifa K, Alhareky M, Gaffar B, Almas K. Global prevalence of periodontal disease and lack of its surveillance. Sci World J. 2020;2020:2146160. https://doi.org/10.1155/2020/2146160.

    Article  Google Scholar 

  2. Park CH. Biomaterial-based approaches for regeneration of periodontal ligament and cementum using 3D platforms. Int J Mol Sci. 2019;20(18):4364. https://doi.org/10.3390/ijms20184364.

    Article  Google Scholar 

  3. Chimene D, Kaunas R, Gaharwar AK. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Adv Mater. 2020;32:e1902026.

    Article  Google Scholar 

  4. Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011;29:183–90. https://doi.org/10.1016/j.tibtech.2010.12.008.

    Article  Google Scholar 

  5. Morgan FL, Moroni L, Baker MB. Dynamic bioinks to advance bioprinting. Adv Healthc Mater. 2020;2020:e1901798. https://doi.org/10.1002/adhm.201901798.

    Article  Google Scholar 

  6. Matai II, Kaur GG, Seyedsalehi AA, McClinton AA, Laurencin CTC. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. https://doi.org/10.1016/j.biomaterials.2019.119536.

    Article  Google Scholar 

  7. Sun WW, Starly BB, Daly ACA, Burdick JAJ, Groll JJR, Skeldon GG, Shu WW, Sakai YY, Shinohara MM, Nishikawa MM, et al. The bioprinting roadmap. Biofabrication. 2020;12:022002. https://doi.org/10.1088/1758-5090/ab5158.

    Article  Google Scholar 

  8. Hixon KR, Melvin AM, Lin AY, Hall AF, Sell SA. Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. J Biomater Appl. 2017;32(5):598–611. https://doi.org/10.1177/0885328217734824. Epub 2017 Oct 5

    Article  Google Scholar 

  9. Xu H, Han D, Dong JS, Shen GX, Chai G, Yu ZY, Lang WJ, Ai ST. Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects. Int J Med Robot. 2010;6(1):66–72. https://doi.org/10.1002/rcs.290.

    Article  Google Scholar 

  10. Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D printing-encompassing the facets of dentistry. Front Bioeng Biotechnol. 2018;6:172. https://doi.org/10.3389/fbioe.2018.00172.

    Article  Google Scholar 

  11. Park CH, Rios HF, Jin Q, Bland ME, Flanagan CL, Hollister SJ, Giannobile WV. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials. 2010;31(23):5945–52. https://doi.org/10.1016/j.biomaterials.2010.04.027.

    Article  Google Scholar 

  12. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane handbook for systematic reviews of interventions version 6.2 (updated February 2021). Cochrane. 2021. Available from: www.training.cochrane.org/handbook.

  13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med. 2021;18(3):e1003583. https://doi.org/10.1371/journal.pmed.1003583.

    Article  Google Scholar 

  14. Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res. 2010;89(8):842–7. https://doi.org/10.1177/0022034510370803.

    Article  Google Scholar 

  15. Park CH, Rios HF, Jin Q, Sugai JV, Padial-Molina M, Taut AD, Flanagan CL, Hollister SJ, Giannobile WV. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials. 2012;33(1):137–45. https://doi.org/10.1016/j.biomaterials.2011.09.057.

    Article  Google Scholar 

  16. Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, Ivanovski S. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials. 2012;33(22):5560–73. https://doi.org/10.1016/j.biomaterials.2012.04.038.

    Article  Google Scholar 

  17. Park CH, Rios HF, Taut AD, Padial-Molina M, Flanagan CL, Pilipchuk SP, Hollister SJ, Giannobile WV. Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng Part C Methods. 2014;20(7):533–42. https://doi.org/10.1089/ten.TEC.2013.0619.

    Article  Google Scholar 

  18. Costa PF, Vaquette C, Zhang Q, Reis RL, Ivanovski S, Hutmacher DW. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol. 2014;41(3):283–94. https://doi.org/10.1111/jcpe.12214.

    Article  Google Scholar 

  19. Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A. 2014;20(7–8):1342–51. https://doi.org/10.1089/ten.TEA.2013.0386.

    Article  Google Scholar 

  20. Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, Hollister SJ, Giannobile WV. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv Healthc Mater. 2016;5(6):676–87. https://doi.org/10.1002/adhm.201500758.

    Article  Google Scholar 

  21. Shim J, Won J, Park J, Bae J, Ahn G, Kim C, Lim D, Cho D, Yun W, Bae E, Jeong C, Huh J. Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration. Int J Mol Sci. 2017;18(5):899.

    Article  Google Scholar 

  22. Dubey N, Ferreira JA, Daghrery A, Aytac Z, Malda J, Bhaduri SB, Bottino MC. Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration. Acta Biomater. 2020;113:164–76. https://doi.org/10.1016/j.actbio.2020.06.011.

    Article  Google Scholar 

  23. Wang CY, Chiu YC, Lee AK, Lin YA, Lin PY, Shie MY. Biofabrication of gingival fibroblast cell-laden collagen/strontium-doped calcium silicate 3D-printed bi-layered scaffold for osteoporotic periodontal regeneration. Biomedicine. 2021;9(4):431. https://doi.org/10.3390/biomedicines9040431.

    Article  Google Scholar 

  24. Raveau S, Jordana F. Tissue engineering and three-dimensional printing in periodontal regeneration: a literature review. J Clin Med. 2020;9(12):4008. https://doi.org/10.3390/jcm9124008.

    Article  Google Scholar 

  25. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56.

    Article  Google Scholar 

  26. Azimi B, Nourpanah P, Rabiee M, Arbab S. Poly (∊-caprolactone) fiber: an overview. J Eng Fibers Fabrics. 2014;9(3):155892501400900.

    Article  Google Scholar 

  27. Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng. 2019;116(2):452–68. https://doi.org/10.1002/bit.26882.

    Article  Google Scholar 

  28. Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D-printed tricalcium phosphate tissue engineering scaffolds. Dent Mater. 2012;28(2):113–22.

    Article  Google Scholar 

  29. Grynpas MD, Pilliar RM, Kandel RA, Renlund R, Filiaggi M, Dumitriu M. Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies. Biomaterials. 2002;23(9):2063–70.

    Article  Google Scholar 

  30. Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, Giannobile WV. 3D-printed bioresorbable scaffold for periodontal repair. J Dent Res. 2015;94(9 Suppl):153S–7S. https://doi.org/10.1177/0022034515588303.

    Article  Google Scholar 

  31. Kačarević ŽP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials (Basel). 2018;11(11):2199. https://doi.org/10.3390/ma11112199.

    Article  Google Scholar 

  32. Kadokura H, Yamazaki T, Masuda Y, et al. Establishment of a primary culture system of human periodontal ligament cells that differentiate into cementum protein 1-expressing cementoblast-like cells. In Vivo. 2019;33(2):349–52. https://doi.org/10.21873/invivo.11480.

    Article  Google Scholar 

  33. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–85.

    Article  Google Scholar 

  34. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27. https://doi.org/10.1016/j.biomaterials.2004.11.057.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhingra, K., Makker, K., Verma, F., Gumber, B. (2022). Applications of 3D Printing in Periodontal Tissue Regeneration. In: Chaudhari, P.K., Bhatia, D., Sharan, J. (eds) 3D Printing in Oral Health Science. Springer, Cham. https://doi.org/10.1007/978-3-031-07369-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07369-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07368-7

  • Online ISBN: 978-3-031-07369-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics